Tail Calls
Class outline:

- Lexical vs. dynamic scopes
- Recursion efficiency
- Tail recursive functions
- Tail call optimization
Scopes
Lexical scope

The standard way in which names are looked up in Scheme and Python.

Lexical (static) scope: The parent of a frame is the frame in which a procedure was defined

```
(define f (lambda (x) (+ x y)))
(define g (lambda (x y) (f (+ x x))))
(g 3 7)
```

Global frame

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>λ (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>λ (x, y)</td>
</tr>
</tbody>
</table>

f1: g [parent=Global]

<table>
<thead>
<tr>
<th>x</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>7</td>
</tr>
</tbody>
</table>

f2: f [parent=Global]

| x | 6 |
Lexical scope

The standard way in which names are looked up in Scheme and Python.

Lexical (static) scope: The parent of a frame is the frame in which a procedure was defined

```scheme
(define f (lambda (x) (+ x y)))
(define g (lambda (x y) (f (+ x x))))
(g 3 7)
```

Global frame

<table>
<thead>
<tr>
<th>f</th>
<th>λ (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>λ (x, y)</td>
</tr>
</tbody>
</table>

f1: g [parent=Global]
```
x | 3
```
```
y | 7
```

f2: f [parent=Global]
```
x | 6
```

What happens when we run this code?
Error: unknown identifier: y
Dynamic scope

An alternate approach to scoping supported by some languages.

Dynamic scope: The parent of a frame is the frame in which a procedure was called.

Scheme includes the **mu** special form for dynamic scoping.

```
(define f (mu (x) (+ x y)))
(define g (lambda (x y) (f (+ x x))))
g 3 7
```

Global frame

```
<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>μ (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>λ (x, y)</td>
<td></td>
</tr>
</tbody>
</table>
```

What happens when we run this code?

```
f1: g [parent=Global]
    | 3 |
    |   |
    | y 7 |

f2: f [parent=f1]
    | 6 |
```
Dynamic scope

An alternate approach to scoping supported by some languages.

Dynamic scope: The parent of a frame is the frame in which a procedure was called

Scheme includes the `mu` special form for dynamic scoping.

```
(define f (mu (x) (+ x y)))
(define g (lambda (x y) (f (+ x x))))
(g 3 7)
```

Global frame

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>μ (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>λ (x, y)</td>
<td></td>
</tr>
</tbody>
</table>

What happens when we run this code?

13

f1: g [parent=Global]

<table>
<thead>
<tr>
<th></th>
<th>x 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y 7</td>
<td></td>
</tr>
</tbody>
</table>

f2: f [parent=f1]

| | x 6 |

Recursion efficiency
Recursion and iteration in Python

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>def factorial(n, k):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ```python
while n > 0:
 n = n - 1
 k = k * n
return k
```               |      |       |
| **def factorial(n, k):**                                            |      |       |
| ```python
if n == 0:
    return k
else:
    return factorial(n-1, k*n)
```               |      |       |
Recursion and iteration in Python

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>
| ```python
def factorial(n, k):
 while n > 0:
 n = n - 1
 k = k * n
 return k
``` | Linear | |
| ```python
def factorial(n, k):
    if n == 0:
        return k
    else:
        return factorial(n-1, k*n)
``` | | |

Recursion and iteration in Python

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>
| def factorial(n, k):
 while n > 0:
 n = n - 1
 k = k * n
 return k | Linear | Constant |

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>
| def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n) | Linear | Constant |
Recursion and iteration in Python

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>
| `def factorial(n, k):
 while n > 0:
 n = n - 1
 k = k * n
 return k` | Linear | Constant |

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
</tr>
</thead>
</table>
| `def factorial(n, k):
 if n == 0:
 return k
 else:
 return factorial(n-1, k*n)` | Linear |
Recursion and iteration in Python

<table>
<thead>
<tr>
<th>Code</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>
| ```python
def factorial(n, k):
 while n > 0:
 n = n - 1
 k = k * n
 return k
``` | Linear | Constant |
| ```python
def factorial(n, k):
    if n == 0:
        return k
    else:
        return factorial(n-1, k*n)
``` | Linear | Linear |
Recursion frames in Python

In Python, recursive calls always create new frames.

```python
def factorial(n, k):
    if n == 0:
        return k
    else:
        return factorial(n-1, k*n)
```

Active frames over time:

View in PythonTutor
Recursion in Scheme

In Scheme interpreters, a tail-recursive function should only require a **constant** number of active frames.

```
(define (factorial n k)
  (if (= n 0)
      k
      (factorial (- n 1) (* k n))))
```

Active frames over time:

```
Global  Global  Global  Global  Global  Global  Global
```

Time
Tail recursive functions
Tail recursive functions

In a **tail recursive function**, every recursive call must be a tail call.

```scheme
(define (factorial n k)
  (if (= n 0)
    k
    (factorial (- n 1) (* k n))))
```

A **tail call** is a call expression in a **tail context**:

- The last body sub-expression in a **lambda** expression
- Sub-expressions 2 & 3 in a tail context **if** expression
- All non-predicate sub-expressions in a tail context **cond**
- The last sub-expression in a tail context **and**, **or**, **begin**, or **let**
Example: Length of list

```
(define (length s)
  (if (null? s) 0
       (+ 1 (length (cdr s)))))
```

A call expression is not a tail call if more computation is still required in the calling procedure.

But linear recursive procedures can often be re-written to use tail calls...
Example: Length of list

(define (length s)
 (if (null? s) 0
 (+ 1 (length (cdr s))))
)

A call expression is not a tail call if more computation is still required in the calling procedure.

But linear recursive procedures can often be re-written to use tail calls...

(define (length-tail s)
 (define (length-iter s n)
 (if (null? s) n
 (length-iter (cdr s) (+ 1 n))
)
)
 (length-iter s 0))
Is it tail recursive?

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s))))
)

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))
Is it tail recursive?

;;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s))))
)

✗ No, because if is not in a tail context.

;;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v)))))
Is it tail recursive?

;; Compute the length of s.
(define (length s)
 (+ 1 (if (null? s)
 -1
 (length (cdr s)))))

✗ No, because \textbf{if} is not in a tail context.

;; Return whether s contains v.
(define (contains s v)
 (if (null? s)
 false
 (if (= v (car s))
 true
 (contains (cdr s) v))))

✓ Yes, because \textbf{contains} is in a tail context \textbf{if}.
Is it tail recursive? 2

;;;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

;;;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))
 (if (= 1 n) 0 (fib-iter 1 2)))

 (fib-iter 0 1))
Is it tail recursive? 2

;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

✔ Yes, because has-repeat is in a tail context.

;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))
 (if (= 1 n) 0 (fib-iter 1 2)))

14
Is it tail recursive? 2

;;; Return whether s has any repeated elements.
(define (has-repeat s)
 (if (null? s)
 false
 (if (contains? (cdr s) (car s))
 true
 (has-repeat (cdr s)))))

✔ Yes, because has-repeat is in a tail context.

;;; Return the nth Fibonacci number.
(define (fib n)
 (define (fib-iter current k)
 (if (= k n)
 current
 (fib-iter (+ current
 (fib (- k 1)))
 (+ k 1))
 (if (= 1 n) 0 (fib-iter 1 2)))

✘ No, because fib is not in a tail context.
Example: Reduce

\[
\begin{align*}
& (\text{reduce } \ast \ (3 \ 4 \ 5) \ 2) \ 120 \\
& (\text{reduce } (\text{lambda } (x \ y) \ (\text{cons } y \ x)) \ (3 \ 4 \ 5) \ '(2)) \ (5 \ 4 \ 3 \ 2)
\end{align*}
\]
Example: Reduce

\[
\text{define } (\text{reduce} \ \text{procedure} \ s \ \text{start})
\]
\[
\text{if} \ (\text{null?} \ s) \ \text{start}
\]
\[
(\text{reduce} \ \text{procedure}
\]
\[
(\text{cdr} \ s)
\]
\[
(\text{procedure} \ \text{start} \ (\text{car} \ s))
\]

Is it tail recursive?
Example: Reduce

\[(\text{reduce } \ast \ (3 \ 4 \ 5) \ 2) \ 120\]
\[(\text{reduce } (\lambda (x \ y) (\text{cons } y \ x)) \ (3 \ 4 \ 5) \ (2)) \ (5 \ 4 \ 3 \ 2)\]

\[(\text{define} \ (\text{reduce} \ \text{procedure} \ s \ \text{start})\]
\[\quad (\text{if} \ (\text{null? } s) \ \text{start}
\quad \quad (\text{reduce} \ \text{procedure}
\quad \quad \quad (\text{cdr } s)
\quad \quad \quad (\text{procedure} \ \text{start} \ (\text{car } s)) \) \)\]

Is it tail recursive?
✔ Yes, because \textit{reduce} is in a tail context.
Example: Reduce

\[(\text{reduce } \ast (3 \ 4 \ 5) \ 2) \ 120 \]
\[(\text{reduce } (\lambda (x \ y) (\text{cons } y \ x)) \ (3 \ 4 \ 5) \ '(2)) \ (5 \ 4 \ 3 \ 2) \]

\[(\text{define } (\text{reduce procedure } s \ \text{start}) \]
\[\quad (\text{if } (\text{null? } s) \ \text{start} \]
\[\quad \quad (\text{reduce procedure} \]
\[\quad \quad \quad (\text{cdr } s) \]
\[\quad \quad \quad (\text{procedure start } (\text{car } s))))) \]

Is it tail recursive?

✅ Yes, because reduce is in a tail context.

However, if procedure is not tail recursive, then this may still require more than constant space for execution.
Example: Map

(map (lambda (x) (- 5 x)) (list 1 2))
Example: Map

(map (lambda (x) (- 5 x)) (list 1 2))

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

Is it tail recursive?
Example: Map

(map (lambda (x) (- 5 x)) (list 1 2))

(define (map procedure s)
 (if (null? s)
 nil
 (cons (procedure (car s))
 (map procedure (cdr s)))))

Is it tail recursive?
✗ No, because map is not in a tail context.
Example: Map (Tail recursive)

```
(define (map procedure s)
  (define (map-reverse s m)
    (if (null? s)
        m
        (map-reverse (cdr s) (cons (procedure (car s)) m)))))
  (reverse (map-reverse s nil)))

(define (reverse s)
  (define (reverse-iter s r)
    (if (null? s)
        r
        (reverse-iter (cdr s) (cons (car s) r))))
  (reverse-iter s nil))

(map (lambda (x) (- 5 x)) (list 1 2))
```
Tail call optimization with trampolining
What the thunk?

Thunk: An expression wrapped in an argument-less function.

Making thunks in Python:

```python
thunk1 = lambda: 2 * (3 + 4)
thunk2 = lambda: add(2, 4)
```

Calling a thunk later:

```python
thunk1()
thunk2()
```
Trampolining

Trampoline: A loop that iteratively invokes thunk-returning functions.

```python
def trampoline(f, *args):
    v = f(*args)
    while callable(v):
        v = v()
    return v
```

The function needs to be thunk-returning! One possibility:

```python
def factorial_thunked(n, k):
    if n == 0:
        return k
    else:
        return lambda: factorial_thunked(n - 1, k * n)
```

```python
trampoline(factorial_thunked, 3, 1)
```

[View in PythonTutor]
Demo: Trampolined interpreter

The Scheme project EC is to implement trampolining. Let's see how it improves the ability to call tail recursive functions...