Interpreters

Announcements

Exceptions (in Python)

Raise Statements

Python exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!"')

TypeError —— A function was passed the wrong number/type of argument
NameError —— A name wasn't found

KeyError —— A key wasn't found in a dictionary

RecursionError —— Too many recursive calls

(Demo)

Try Statements

Try statements handle exceptions

try:
<try suite>

except <exception class> as <name>:
<except suite>

Execution rule:
The <try suite> is executed first

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

Exceptions Example: Reduce

Reducing a Sequence to a Value

def reduce(f, s, initial):

"""Combine elements of s pairwise using f, starting with initial.

E.g., reduce(mul, [2, 4, 81, 1) is equivalent to mul(mul(mul(1l, 2), 4), 8).

>>> reduce(mul, [2, 4, 81, 1)
04

f is ...

a two-argument function that returns a first argument
S 1S ...

a sequence of values that can be the second argument
initial is ...

a value that can be the first argument

16,777,216
pow 64 E\
o[
o] |2
pow| 2]

*
LLE]

reduce(pow, [1, 2, 3, 4], i)

Reduce Practice

Implement sum_squares, which returns the sum of the square of each number in a list s.

def reduce(f, s, initial):
“""Combine elements of s pairwise using f, starting with initial.

E.g., reduce(mul, [2, 4, 81, 1) is equivalent to mul(mul(mul(1l, 2), 4), 8).

>>> reduce(mul, [2, 4, 8], 1)
64

def sum_squares(s):
"""Return the sum of squares of the numbers in s.

>>> sum_squares([3, 4, 5]1) # 3%3 + 4x4 + 5%5
50

return reduce(lambda x, y: x +y xy 5 @)

(Demo)

Reducing a Linked List

A reduce that takes a function, a Scheme list represented as a Link, and an initial value.

def reduce(fn, s, initial):
"""Reduce a Scheme list s made of Links using fn and an initial value.

>>> reduce(add, Link(1, Link(2, Link(3, nil))), ©) ; (+ (+ (+ @ 1) 2) 3)
6

minn
if s is nil:
return initial

return reduce(fn, s.rest, fn(initial, s.first))

class Link:
empty = ()
def init (self, first, rest):
self.first = first
self.rest = rest

nil = Link.empty

Calculator Evaluation

The Calculator Language (a Small Subset of Scheme)

The Calculator language has primitive expressions and call expressions. (That's it!)
A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, %, /) followed by 0
or more expressions: (+ 12 3) (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Link instances) that encode tree structures.

Expression Expression Tree Representation as Link objects

first [rest first [rest first [rest first |rest

(>

+
*

3
(
(

4 5) %k 3 fl F F &
irst |rest irst |[rest irst |rest irst |rest
6 7 8)) * |~ 6 | 1> 7 | —| 8 |nil

+ 4 5 x 6 7 8

first [rest first |rest first [rest
+ | =~ 4 | | 5 il

Calculator: The Eval Function

The eval function computes the
value of an expression, which
is always a number

Implementation

exp:

first

rest

first

rest

first

rest

ffirst

rest

nil

def calc_eval(exp):

if isinstance(exp, (int, float)):

return exp

elif isinstance(exp, Link):

first

rest

first

rest

first

rest

first

rest

8 |nil

first

rest
*—

—>

first

4

rest
o—

—>

first

5

rest

nil

Recursive call
returns a number
for each operand

arguments = map_link(calc_eval, exp.rest)

else: .
+ ’
raise TypeError L %',

al

A Scheme list
of numbers

(Demo)

Language Semantics

A number evaluates to...

A call expression evaluates to...

itself

its argument values

combined by an operator

Interactive Interpreters

Read-Eval-Print Loop (REPL)

The user interface for many programming languages 1is an interactive interpreter
1. Print a prompt
Read text input from the user

Parse the text input into an expression

2

3

4. Evaluate the expression

5 If any errors occur, report those errors, otherwise
6

Print the value of the expression and repeat

(Demo)

Interpreting Scheme

The Structure of an Interpreter

Base cases: Eval
e Primitive values (numbers)
* Look up values bound to symbols

Recursive calls:

* Eval(operator) & Eval(operand) of calls
e Apply(procedure, arguments)

e Eval(sub-expression) of special forms

/\
4)
Requires an
environment
fo{ SKmb°1 Base cases: Apply
OOKUp e Built-in primitive procedures
S J

Recursive calls:
Creates a new * Eval(body) of user-defined procedures
environment each time

a user—defined
procedure is applied

Project 4

Linked Lists in Project 4: Scheme
https://cs6la.org/proj/scheme/
Tokenization/Parsing: Converts text into Python representation of Scheme expressions:
* Numbers are represented as numbers
 Symbols are represented as strings
e Lists are represented as instances of the Link class
Evaluation: Converts Scheme expressions to values while executing side effects:
 scheme_eval(expr, env) returns the value of an expression in an environment
* scheme_apply(procedure, args) applies a procedure to its arguments

« The Python function scheme_apply returns the return value of the procedure it applies

(Demo)

Discussion Question: The Symbol of a Define Expression

Return the symbol of a define expression. There are two formats for define expressions:
(define x (+ 2 3)) or (define (f x) (+ x 3))
def symbol(expr):

"""Given a define expression exp, return the symbol defined.

>>> def_x = read_line("(define x (+ 2 3))")

>>> def_f = read_line("(define (f x) (+ x 3))")

>>> symbol(def_x)

X
>>> symbol(def_f)
Ifl

assert exp.first == 'define' and exp.rest is not nil and exp.rest.rest is not nil
signature = _expr.rest.first

if scheme_symbolp(signature):
return signature
else:

return signature.first

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:
*Symbols are looked up in the current environment

*Self-evaluating expressions are returned as values

*All other legal expressions are represented as Scheme lists, called combinations

-

&

Special forms

are identified

by the first
list element

J

(define (demo s) (if (null? s) '(3) (cons (car s)

(<operator> <operand 0> ...

<operand k>)

(demo (list 1 2))

Any combination
that is not a
known special
form is a call

expression

~

J

(demo

(cdr s)))))

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user—-defined procedures

(Lambda (<formal-parameters>) <body>)

(Lambda (x) (x x x))

class LambdaProcedure:
def __init__ (self, formals, body, env):
self.formals = FOrMals «eereremmmmmmrrnreenesseeneaeanen A scheme list of symbols
se'l_f.body — body .. A SCheme llst Of expressions

SELT.CNV = @MV srrrrrererrrmmsssnnimissnnnrinssens s s ssanss s A Frame instance

Frames and Environments

A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y 3
Z 5

fl: [parent=g]

2
Z 4

(Demo)

