
Interpreters

Announcements

Exceptions (in Python)

Raise Statements

Python exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RecursionError -- Too many recursive calls

4

(Demo)

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

5

Exceptions Example: Reduce

f is ...
 a two-argument function that returns a first argument
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

7

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

Reduce Practice

Implement sum_squares, which returns the sum of the square of each number in a list s.

8

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

def sum_squares(s):
 """Return the sum of squares of the numbers in s.

 >>> sum_squares([3, 4, 5]) # 3*3 + 4*4 + 5*5
 50
 """
 return reduce(_______________________ , s, 0) lambda x, y: x + y * y

(Demo)

Reducing a Linked List

A reduce that takes a function, a Scheme list represented as a Link, and an initial value.

9

def reduce(fn, s, initial):
 """Reduce a Scheme list s made of Links using fn and an initial value.

 >>> reduce(add, Link(1, Link(2, Link(3, nil))), 0) ; (+ (+ (+ 0 1) 2) 3)
 6
 """
 if s is nil:
 return initial

 return __ reduce(fn, s.rest, fn(initial, s.first))

class Link:
empty = ()

 def __init__(self, first, rest):
 self.first = first
 self.rest = rest

nil = Link.empty

Calculator Evaluation

The Calculator Language (a Small Subset of Scheme)

11

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3) (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Link instances) that encode tree structures.

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as Link objectsExpression Tree

* 3

+ 4 5 * 6 87

Calculator: The Eval Function

12

def calc_eval(exp):

 if isinstance(exp, (int, float)):

 return exp

 elif isinstance(exp, Link):

 arguments = map_link(calc_eval, exp.rest)

 return calc_apply(exp.first, arguments)

 else:

 raise TypeError

A number evaluates to...

A call expression evaluates to...

 its argument values

 itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

The eval function computes the
value of an expression, which
is always a number

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

exp:

(Demo)

Interactive Interpreters

Read-Eval-Print Loop (REPL)

The user interface for many programming languages is an interactive interpreter

1. Print a prompt

2. Read text input from the user

3. Parse the text input into an expression

4. Evaluate the expression

5. If any errors occur, report those errors, otherwise

6. Print the value of the expression and repeat

14

(Demo)

Interpreting Scheme

The Structure of an Interpreter

16

Apply

Eval

Recursive calls:
• Eval(operator) & Eval(operand) of calls
• Apply(procedure, arguments)
• Eval(sub-expression) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

Creates a new
environment each time

a user-defined
procedure is applied

Project 4

Linked Lists in Project 4: Scheme

Tokenization/Parsing: Converts text into Python representation of Scheme expressions:

• Numbers are represented as numbers

• Symbols are represented as strings

• Lists are represented as instances of the Link class

Evaluation: Converts Scheme expressions to values while executing side effects:

• scheme_eval(expr, env) returns the value of an expression in an environment

• scheme_apply(procedure, args) applies a procedure to its arguments

• The Python function scheme_apply returns the return value of the procedure it applies

18

https://cs61a.org/proj/scheme/

(Demo)

Discussion Question: The Symbol of a Define Expression

Return the symbol of a define expression. There are two formats for define expressions:
(define x (+ 2 3)) or (define (f x) (+ x 3))
def symbol(expr):
 """Given a define expression exp, return the symbol defined.
 >>> def_x = read_line("(define x (+ 2 3))")
 >>> def_f = read_line("(define (f x) (+ x 3))")
 >>> symbol(def_x)
 'x'
 >>> symbol(def_f)
 'f'
 """
 assert exp.first == 'define' and exp.rest is not nil and exp.rest.rest is not nil
 signature = _________________
 if scheme_symbolp(signature):
 return signature
 else:
 return _________________

19

expr.rest.first

signature.first

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:

• Symbols are looked up in the current environment

• Self-evaluating expressions are returned as values

• All other legal expressions are represented as Scheme lists, called combinations

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are identified
by the first
list element

Any combination
that is not a
known special
form is a call

expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

21

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user-defined procedures

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

23

A scheme list of symbols
A scheme list of expressions
A Frame instance

Frames and Environments

A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

24

(Demo)

