
Macros

Announcements

Expressions

Discussion Question: Pythagorean Theorem

Add ` and , in some blanks so that the second expression evaluates to (+ (* a a) (* b b))

4

_(define (square-expr term) _(_* _term _term))

_(_+ _(_square-expr _a) _(_square-expr _b))

Quick quasiquotation review: `(+ ,(* 2 3) 1) evaluates to (+ 6 1)

Discussion Question: Pythagorean Theorem

Add ` and , in some blanks so that the second expression evaluates to (+ (* a a) (* b b))

4

_(_+ _(_square-expr _a) _(_square-expr _b))

Quick quasiquotation review: `(+ ,(* 2 3) 1) evaluates to (+ 6 1)

 (define (square-expr term) `(* ,term ,term))

Discussion Question: Pythagorean Theorem

Add ` and , in some blanks so that the second expression evaluates to (+ (* a a) (* b b))

4

Quick quasiquotation review: `(+ ,(* 2 3) 1) evaluates to (+ 6 1)

 (define (square-expr term) `(* ,term ,term))

`(+ ,(square-expr `a) ,(square-expr `b))

Discussion Question: Pythagorean Theorem

Add ` and , in some blanks so that the second expression evaluates to (+ (* a a) (* b b))

4

Quick quasiquotation review: `(+ ,(* 2 3) 1) evaluates to (+ 6 1)

 (define (square-expr term) `(* ,term ,term))

`(+ ,(square-expr `a) ,(square-expr `b))

(Demo)

Macros

Macros Perform Code Transformations

6

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

6

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

6

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2)) (begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))
2
2

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

• Evaluate the expression returned from the macro procedure

(begin (print 2) (print 2))

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

Scheme has a define-macro special form that defines a source code transformation

6

(define-macro (twice expr)

 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

• Evaluate the expression returned from the macro procedure

(Demo)

(begin (print 2) (print 2))

For Macro

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

scm> (for x (2 3 4 5) (* x x))

(4 9 16 25)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

scm> (map (lambda (x) (* x x)) (2 3 4 5))

scm> (for x (2 3 4 5) (* x x))

(4 9 16 25)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))

(4 9 16 25)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))

(4 9 16 25)

(define-macro (for sym vals expr)

 (list 'map ___)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))

(4 9 16 25)

(define-macro (for sym vals expr)

 (list 'map ___)(list 'lambda (list sym) expr) vals)

Discussion Question

Define a macro that evaluates an expression for each value in a sequence

8

scm> (map (lambda (x) (* x x)) (2 3 4 5))
(4 9 16 25)

scm> (for x (2 3 4 5) (* x x))

(4 9 16 25)

(define-macro (for sym vals expr)

 (list 'map ___)(list 'lambda (list sym) expr) vals)

(Demo)

Trace

Tracing Recursive Calls

10

Tracing Recursive Calls
def trace(fn):
 def traced(n):
 print(f'{fn.__name__}({n})')
 return fn(n)
 return traced

@trace
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n - 1)

10

Tracing Recursive Calls
def trace(fn):
 def traced(n):
 print(f'{fn.__name__}({n})')
 return fn(n)
 return traced

@trace
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n - 1)

10

>>> fact(5)
fact(5)
fact(4)
fact(3)
fact(2)
fact(1)
fact(0)
120

Tracing Recursive Calls
def trace(fn):
 def traced(n):
 print(f'{fn.__name__}({n})')
 return fn(n)
 return traced

@trace
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n - 1)

10

(define fact (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1))))))

(define original fact)
(define fact (lambda (n)
 (print (list 'fact n))
 (original n)))

>>> fact(5)
fact(5)
fact(4)
fact(3)
fact(2)
fact(1)
fact(0)
120

Tracing Recursive Calls
def trace(fn):
 def traced(n):
 print(f'{fn.__name__}({n})')
 return fn(n)
 return traced

@trace
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n - 1)

10

(define fact (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1))))))

(define original fact)
(define fact (lambda (n)
 (print (list 'fact n))
 (original n)))

>>> fact(5)
fact(5)
fact(4)
fact(3)
fact(2)
fact(1)
fact(0)
120

scm> (fact 5)
(fact 5)
(fact 4)
(fact 3)
(fact 2)
(fact 1)
(fact 0)
120

Tracing Recursive Calls
def trace(fn):
 def traced(n):
 print(f'{fn.__name__}({n})')
 return fn(n)
 return traced

@trace
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n - 1)

10

(define fact (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1))))))

(define original fact)
(define fact (lambda (n)
 (print (list 'fact n))
 (original n)))

>>> fact(5)
fact(5)
fact(4)
fact(3)
fact(2)
fact(1)
fact(0)
120

scm> (fact 5)
(fact 5)
(fact 4)
(fact 3)
(fact 2)
(fact 1)
(fact 0)
120 (Demo)

