Macros

Announcements

Quasiquotation

Quasiquotation

There are two ways to quote an expression
Quote: ‘(ab) = (ab)
Quasiquote: “(a b) => (a b)
Parts of a quasiquoted expression can be unquoted with , to evaluate sub-expressions
(define b 4)
Quasiquote: “(a ,(+ b 1)) => (a 5)
Quasiquotation is particularly convenient for generating Scheme expressions:
(define (make-add-lambda n) " (lambda (d) (+ d ,n)))

(make—-add-lambda 2) => (lambda (d) (+ d 2))

Discussion Question: Fact-Exp

Use quasiquotation to define fact-expr, a procedure that takes an integer n and returns a
nested multiplication expression that evaluates to n factorial.

scm> (fact-expr 5)

(define (fact-expr n)

(if (<= n 1) 1 “(* , (fact—expr (- n 1)))))

, N
x or 'k or ,xk (j; or 'm or ,n {i;ollev.com1c561a]

http://pollev.com/cs61a

Macros

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation
Macros exist in many languages, but are easiest to define correctly in a language like Lisp

61A's Scheme has a define-macro special form that defines a source code transformation

(define-macro (twice expr) >§_(twice (print 2))% P (begin (print 2) (print 2))
(list 'begin expr expr)) 2 T
2

Evaluation procedure of a macro call expression:
 Evaluate the operator sub-expression, which evaluates to a macro

e Call the macro procedure on the operand expressions without evaluating them first

 Evaluate the expression returned from the macro procedure

(Demo)

Macros vs Procedures

A macro is an operation performed on the source code of a program before evaluation

(define (second-proc expr) (car (cdr expr)))

(define-macro (second-macro expr) (car (cdr expr)))

scm> (second-proc (list 5 7)) scm> (second-macro (list 5 7))

7 5

scm> (second-proc (list (+ 2 3) (+ 3 4))) scm> (second-macro (list (+ 2 3) (+ 3 4)))
7 5

scm> (second-proc (list 5 7 (print 1))) scm> (second-macro (list 5 7 (print 1)))
1 5

7

scm> (second-proc (+ 5 7)) scm> (second-macro (+ 5 7))

Error: argument @ of cdr has wrong type (int) 5

Evaluation procedure of a macro call expression:

e Call the macro procedure on the operand expressions without evaluating them first
 Evaluate the expression returned from the macro procedure

Discussion Question: Repeat

Define repeat, a macro that is called on a number n and an expression expr. It evaluates
expr n times, and its value is the final result.

(repeat (+ 2 2) (print 3)) is equivalent to (begin (print 3) (print 3) (print 3) (print 3))

; Return a list containing expr n times.

; scm> (repeated-expr 4 '(print 2))

; ((print 2) (print 2) (print 2) (print 2))
(define (repeated-expr n expr)

(if (zero? n) nil (cons expr (repeated-expr (- n 1) expr)) jy)

Evaluate expr n times and return the last value.
scm> (repeat (+ 1 2) (print 5)) => evaluates (begin (print 5) (print 5) (print 5))
5
5
5
scm> (repeat 3 (+ 2 3)) ; (+ 2 3) is evaluated 3 times, but only the last is returned
5
define-macro (repeat n expr)

(_CONS_ 'begin (repeated—expr _{eval n) expr)

[aAollev.com csbla J

o~ wE wWE WE WE wWE wWE W=

http://pollev.com/cs61a

Discussion Question: Repeat Repeat

Define repeat, a macro that is called on a number n and an expression expr. It evaluates
expr n times, and its value is the final result.

(repeat (+ 2 2) (print 3)) is equivalent to:
(begin
(define (repeater k)
(if (= k 1) (print 3) (begin (print 3) (repeater (- k 1)))))
(repeater 4))

; Return an expression that will repeatedly evaluate expr n times using recursion.

; scm> (repeated-expr 4 '(print 2))
; ((define (repeater k) (if (= k 1) (print 2) (begin (print 2) (repeater (- k 1))))) (repeater 4))

(define (repeated-expr n expr

)

(if (= k 1) ,expr (begin ,expr (repeater (- k 1)))))
(repeater ,n) y)

; Evaluate expr n times and return the last value.

(define-macro (repeat n expr)

(cons 'begin (repeated-expr (eval n) expr)))

http://pollev.com/cs61a

For Macro

For Macro

Define a for macro that evaluates an expression for each value in a sequence
scm> (for x '(2 34 5) (x x x))
(4 9 16 25

)
scm> (map (lambda (x) (% x x)) '(2 3 4 5))
(4 9 16 25)

(define-macro (for sym vals expr)
(list 'map (list 'lambda (list sym) expr) vals))

Rewrite it using quasiquotation

(define-macro (for sym vals expr)
*(map (lambda (,sym) ,expr y ,vals))

Why not define it so that the values don't need to be quoted?

scm> (for x (2 3 4 5) (% x x))
(4 9 16 25)

