
Macros

Announcements

Quasiquotation

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

Parts of a quasiquoted expression can be unquoted with , to evaluate sub-expressions

 (define b 4)

 Quasiquote: `(a ,(+ b 1)) => (a 5)

Quasiquotation is particularly convenient for generating Scheme expressions:

 (define (make-add-lambda n) `(lambda (d) (+ d ,n)))

 (make-add-lambda 2) => (lambda (d) (+ d 2))

7

Discussion Question: Fact-Exp

Use quasiquotation to define fact-expr, a procedure that takes an integer n and returns a
nested multiplication expression that evaluates to n factorial.

scm> (fact-expr 5)
(* 5 (* 4 (* 3 (* 2 1))))

(define (fact-expr n)

 (if (<= n 1) 1 `(_____ _____ ___________________________)))

8

,n ,(fact-expr (- n 1))*

* or '* or ,* n or 'n or ,n pollev.com/cs61a

http://pollev.com/cs61a

Macros

Macros Perform Code Transformations

A macro is an operation performed on the source code of a program before evaluation

Macros exist in many languages, but are easiest to define correctly in a language like Lisp

61A's Scheme has a define-macro special form that defines a source code transformation

10

(define-macro (twice expr)
 (list 'begin expr expr))

> (twice (print 2))
2
2

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

• Evaluate the expression returned from the macro procedure

(Demo)

(begin (print 2) (print 2))

Macros vs Procedures

A macro is an operation performed on the source code of a program before evaluation

11

Evaluation procedure of a macro call expression:

• Evaluate the operator sub-expression, which evaluates to a macro

• Call the macro procedure on the operand expressions without evaluating them first

• Evaluate the expression returned from the macro procedure

(define (second-proc expr) (car (cdr expr)))
(define-macro (second-macro expr) (car (cdr expr)))

scm> (second-proc (list 5 7))
7
scm> (second-proc (list (+ 2 3) (+ 3 4)))
7
scm> (second-proc (list 5 7 (print 1)))
1
7
scm> (second-proc (+ 5 7))
Error: argument 0 of cdr has wrong type (int)

scm> (second-macro (list 5 7))
5
scm> (second-macro (list (+ 2 3) (+ 3 4)))
5
scm> (second-macro (list 5 7 (print 1)))
5

scm> (second-macro (+ 5 7))
5

Discussion Question: Repeat

Define repeat, a macro that is called on a number n and an expression expr. It evaluates
expr n times, and its value is the final result.

(repeat (+ 2 2) (print 3)) is equivalent to (begin (print 3) (print 3) (print 3) (print 3))

; Return a list containing expr n times.
; scm> (repeated-expr 4 '(print 2))
; ((print 2) (print 2) (print 2) (print 2))
(define (repeated-expr n expr)

 (if (zero? n) nil ___))

; Evaluate expr n times and return the last value.
; scm> (repeat (+ 1 2) (print 5)) => evaluates (begin (print 5) (print 5) (print 5))
; 5
; 5
; 5
; scm> (repeat 3 (+ 2 3)) ; (+ 2 3) is evaluated 3 times, but only the last is returned
; 5
(define-macro (repeat n expr)

 (______ 'begin (repeated-expr __________ __________)))

12

(cons expr (repeated-expr (- n 1) expr))

cons (eval n) expr

pollev.com/cs61a

http://pollev.com/cs61a

Discussion Question: Repeat Repeat

Define repeat, a macro that is called on a number n and an expression expr. It evaluates
expr n times, and its value is the final result.

(repeat (+ 2 2) (print 3)) is equivalent to:
(begin
 (define (repeater k)
 (if (= k 1) (print 3) (begin (print 3) (repeater (- k 1)))))
 (repeater 4))
; Return an expression that will repeatedly evaluate expr n times using recursion.
; scm> (repeated-expr 4 '(print 2))
; ((define (repeater k) (if (= k 1) (print 2) (begin (print 2) (repeater (- k 1))))) (repeater 4))
(define (repeated-expr n expr)

 `(______________________

 (if (= k 1) ,expr (begin ,expr (repeater (- k 1)))))

 ______________))

; Evaluate expr n times and return the last value.

(define-macro (repeat n expr)

 (cons 'begin (repeated-expr (eval n) expr)))
13

(define (repeater k)

(repeater ,n)

pollev.com/cs61a

http://pollev.com/cs61a

For Macro

For Macro

Define a for macro that evaluates an expression for each value in a sequence

15

scm> (map (lambda (x) (* x x)) '(2 3 4 5))
(4 9 16 25)

scm> (for x '(2 3 4 5) (* x x))
(4 9 16 25)

(define-macro (for sym vals expr)
 (list 'map (list 'lambda (list sym) expr) vals))

Why not define it so that the values don't need to be quoted?

scm> (for x (2 3 4 5) (* x x))
(4 9 16 25)

Rewrite it using quasiquotation

(define-macro (for sym vals expr)

 `(____ (_______ (_____) ______) _______))map lambda ,sym ,expr ,vals

