Announcements
Database Management Systems
Database Management System Architecture

Architecture of a Database System by Hellerstein, Stonebreaker, and Hamilton
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time.
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

Select the parents of curly-furred dogs:

```sql
select parent from parents, dogs
    where child = name and fur = "curly";
```
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

Select the parents of curly-furred dogs:

```
select parent from parents, dogs
where child = name and fur = "curly";
```
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

Select the parents of curly-furred dogs:

```sql
select parent from parents, dogs
where child = name and fur = "curly";
```
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

Select the parents of curly-furred dogs:

```sql
select parent from parents, dogs
where child = name and fur = "curly";
```
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

Select the parents of curly-furred dogs:

```sql
select parent
from parents, dogs
where child = name and fur = "curly";
```

Join all rows of parents to all rows of dogs, filter by `child = name` and `fur = "curly"`
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

Select the parents of curly-furred dogs:

```sql
select parent from parents, dogs
where child = name and fur = "curly";
```

Join all rows of parents to all rows of dogs, filter by `child = name` and `fur = "curly"`

Join only rows of parents and dogs where `child = name`, filter by `fur = "curly"`
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

Select the parents of curly-furred dogs:

```sql
select parent from parents, dogs
where child = name and fur = "curly";
```

Join all rows of parents to all rows of dogs, filter by \texttt{child = name} and \texttt{fur = "curly"}

Join only rows of parents and dogs where \texttt{child = name}, filter by \texttt{fur = "curly"}

Filter dogs by \texttt{fur = "curly"}, join result with all rows of parents, filter by \texttt{child = name}
Query Planning

The manner in which tables are filtered, sorted, and joined affects execution time

- Select the parents of curly-furred dogs:
  ```sql
  select parent from parents, dogs
  where child = name and fur = "curly";
  ```

- Join all rows of parents to all rows of dogs, filter by child = name and fur = "curly"

- Join only rows of parents and dogs where child = name, filter by fur = "curly"

- Filter dogs by fur = "curly", join result with all rows of parents, filter by child = name

- Filter dogs by fur = "curly", join only rows of result and parents where child = name
Local Tables
Local Tables

A `create table` statement names a table globally
Local Tables

A create table statement names a table globally

create table parents as
 select "abraham" as parent, "barack" as child union
 select "abraham", "clinton" union
 select "delano", "herbert" union
 select "fillmore", "abraham" union
 select "fillmore", "delano" union
 select "fillmore", "grover" union
 select "eisenhower", "fillmore";
Local Tables

A create table statement names a table globally

create table parents as
 select "abraham" as parent, "barack" as child union
 select "abraham" , "clinton" union
 select "delano" , "herbert" union
 select "fillmore" , "abraham" union
 select "fillmore" , "delano" union
 select "fillmore" , "grover" union
 select "eisenhower" , "fillmore";

parents:

<table>
<thead>
<tr>
<th>Parent</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
</tr>
<tr>
<td>abraham</td>
<td>clinton</td>
</tr>
<tr>
<td>delano</td>
<td>herbert</td>
</tr>
<tr>
<td>fillmore</td>
<td>abraham</td>
</tr>
<tr>
<td>fillmore</td>
<td>delano</td>
</tr>
<tr>
<td>fillmore</td>
<td>grover</td>
</tr>
<tr>
<td>eisenhower</td>
<td>fillmore</td>
</tr>
</tbody>
</table>
Local Tables

A `create table` statement names a table globally

create table parents as
 select "abraham" as parent, "barack" as child union
...
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

```
create table parents as
    select "abraham" as parent, "barack" as child union
...
```
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
...
```
Local Tables

A create table statement names a table globally

A with clause of a select statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
...

parents:

select parent from ...

parents:

Eisenhower

Fillmore

Abraham, Delano, Grover

Barack, Clinton, Herbert
Local Tables

A create table statement names a table globally.

A with clause of a select statement names a table that is local to the statement.

create table parents as
 select "abraham" as parent, "barack" as child union
 ...
with

select parent from ...
Local Tables

A *create table* statement names a table globally

A *with* clause of a *select* statement names a table that is local to the statement

```
create table parents as
    select "abraham" as parent, "barack" as child union
    ...

with
    best(dog) as ( ...
```

select parent from ...
Local Tables

A create table statement names a table globally

A with clause of a select statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
 ...
with
 best(dog) as (
 select "eisenhower" union

select parent from ...
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```
create table parents as
    select "abraham" as parent, "barack" as child union
... with
    best(dog) as ( select "eisenhower" union select "barack"
select parent from ...
```
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
 ...

with
 best(dog) as (
 select "eisenhower" union
 select "barack"
)

select parent from ...

parents:
 Eisenhower
 Fillmore
 Abraham
 Delano
 Grover
 Barack
 Clinton
 Herbert
Local Tables

A *create table* statement names a table globally.

A *with* clause of a *select* statement names a table that is local to the statement.

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
    ...
with
    best(dog) as (  
        select "eisenhower" union
        select "barack"
    )
select parent from ...
```

Diagram:

- **Parents:**
 - Eisenhower
 - Fillmore

- **Best:**
 - Dog
 - Eisenhower
 - Barack

- **With Clause of a Select Statement:**
 - Abraham
 - Delano
 - Grover
Local Tables

A create table statement names a table globally

A with clause of a select statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
 ...
with
 best(dog) as (
 select "eisenhower" union
 select "barack"
)
select parent from parents, best where child=dog;
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
...

with
 best(dog) as (
 select "eisenhower" union
 select "barack"
)

select parent from parents, best where child=dog;

<table>
<thead>
<tr>
<th>parent</th>
<th>dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>eisenhower</td>
</tr>
<tr>
<td></td>
<td>barack</td>
</tr>
</tbody>
</table>

parents:
 Eisenhower
 Fillmore
 Abraham
 Delano
 Grover

Barack
 Clinton
 Herbert
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
 ...
with
 best(dog) as (
 select "eisenhower" union
 select "barack"
)
select parent from parents, best where child=dog;

<table>
<thead>
<tr>
<th>parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
</tr>
</tbody>
</table>
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```sql
create table parents as
    select "abraham" as parent, "barack" as child union

with
    best(dog) as (
        select "eisenhower" union
        select "barack"
    )
select parent from parents, best where child=dog;
```

<table>
<thead>
<tr>
<th>parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
</tr>
</tbody>
</table>
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
    select "eisenhower" union
    select "barack"
with
    best(dog) as (
        select "eisenhower" union
        select "barack"
    )
select parent from parents, best where child=dog;
```

(Demo)
Example: Relationships

with

what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)

select child as ____________, second as ____________
from parents, what where parent=first;
Example: Relationships

(A) What are appropriate names for the columns in this result?

with

what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)

select child as ____________, second as ____________
from parents, what where parent=first;
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

with

what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)

select child as ___________, second as ___________
from parents, what where parent=first;
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

```sql
with siblings
what(first, second) as (  
    select a.child, b.child  
    from parents as a, parents as b  
    where a.parent = b.parent and  
    a.child != b.child  
)
select child as __________, second as __________  
from parents, what where parent=first;
```
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

with siblings
what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)

select child as __________, second as __________
from parents, what where parent=first;

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

```sql
with siblings
what(first, second) as (
    select a.child, b.child
    from parents as a, parents as b
    where a.parent = b.parent and
        a.child != b.child
)
select child as __________, second as __________
from parents, what where parent=first;
```

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

```sql
with siblings
what(first, second) as (
  select a.child, b.child
  from parents as a, parents as b
  where a.parent = b.parent and
  a.child != b.child
)
select child as __________, second as __________
from parents, what where parent=first;
```

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

with siblings
what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)

select child as ____________, second as ____________
 from parents, what
 where parent=first;

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

with siblings
what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)
select child as ________, second as __________
 from parents, what where parent=first;

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>

parents:
- Eisenhower
- Fillmore
- Abraham
- Barack
- Clinton
- Delano
- Herbert
- Grover
Recursive Local Tables
Local Tables can be Declared Recursively
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as
 select "abraham" as parent, "barack" as child union
 ...

parents:
 Eisenhower
 Fillmore
 Abraham Delano Grover
 Barack Clinton Herbert
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
    ...
```
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as

select "abraham" as parent, "barack" as child union
...

ancestors(ancestor, descendent) as (
 select parent, child from parents union
 select ancestor, child
 from ancestors, parents
 where parent = descendent
)
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

```sql
create table parents as
  select "abraham" as parent, "barack" as child union
... optional in sqlite

with recursive
  ancestors(ancestor, descendent) as ( 
    select parent, child from parents union
    select ancestor, child 
    from ancestors, parents 
    where parent = descendent 
  )

select ancestor from ancestors where descendent="herbert";
```
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
    ...
with recursive
    ancestors(ancestor, descendent) as ( 
        select parent, child from parents union
        select ancestor, child
        from ancestors, parents
        where parent = descendent
    )
select ancestor from ancestors where descendent="herbert";
```

parents:

```
<table>
<thead>
<tr>
<th>ancestor</th>
</tr>
</thead>
<tbody>
<tr>
<td>delano</td>
</tr>
<tr>
<td>fillmore</td>
</tr>
<tr>
<td>eisenhower</td>
</tr>
</tbody>
</table>
```

![Diagram showing the relationship between ancestors and descendants, with specific examples of names like Abraham, Delano, and Herbert.](image)
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table...
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```sql
create table odds as
    with
    odds(n) as (  
        select 1 union
        select n+2 from odds where n < 15  
    )  
    select n from odds;
```
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```
create table odds as
  with
    odds(n) as (  
      select 1 union 
      select n+2 from odds where n < 15
    )
  select n from odds;
```

odds:
1
3
5
7
9
11
13
15
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```sql
create table odds as
with
  odds(n) as (  
    select 1 union  
    select n+2 from odds where n < 15;  
  )
select n from odds;
```

odds:

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```sql
create table odds as
  with
    odds(n) as (  
      select 1 union
      select n+2 from odds where n < 15;  
    )
  select n from odds;
```

Which names above can change without affecting the result?
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```
create table odds as
with
    odds(n) as (  
        select 1 union
        select n+2 from odds where n < 15 ;
    )
select n from odds;
```

Which names above can change without affecting the result?
Limits on Recursive Select Statements
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens
  ),
  evens(x) as (  
    select x+1 from odds
  )
select x from odds
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause.

No mutual recursion: two or more tables cannot be defined in terms of each other.

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens
  ),
  evens(x) as (  
    select x+1 from odds
  )
select x from odds
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause.

No mutual recursion: two or more tables cannot be defined in terms of each other.

```sql
with
  odds(x) as (select 1 union select x+1 from evens),
  evens(x) as (select x+1 from odds)
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause.
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens
  ),
  evens(x) as (  
    select x+1 from odds
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause

```sql
with
  ints(x) as (  
    select 1 union
    select x-1 from ints union
    select x+1 from ints
  )
select x from ints;
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens
  ),
  evens(x) as (  
    select x+1 from odds
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause

```sql
with
  ints(x) as (  
    select 1 union
    select x-1 from ints union
    select x+1 from ints
  )
select x from ints;
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens  
  ),
  evens(x) as (  
    select x+1 from odds  
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause

```sql
with
  ints(x) as (  
    select 1 union  
    select x-1 from ints union  
    select x+1 from ints  
  )
select x from ints;
```

```
with
  ints(x) as (  
    select a.x + b.x from ints as a, ints as b  
  )
select x from ints;
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

with
 odds(x) as (
 select 1 union select x+1 from evens
),
 evens(x) as (
 select x+1 from odds
)
select x from odds

No tree recursion: the table being defined can only appear once in a from clause

with
 ints(x) as (
 select 1 union
 select x-1 from ints union
 select x+1 from ints
)
select x from ints;

with
 ints(x) as (
 select 1 union
 select a.x + b.x from ints as a, ints as b
)
select x from ints;
String Examples
Language is Recursive
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird

The dog chased the cat

that the bird chased
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird

The dog chased the cat

that the bird chased

The dog chased the cat

the bird chased
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat
that chased the bird

The dog chased the cat
that the bird chased

The dog chased the cat
the bird chased

The dog the bird the cat chased chased chased me
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat
...that chased the bird

The dog chased the cat
...that the bird chased

The dog chased the cat
...the bird chased

The dog the bird the cat chased chased chased me

Bulldogs bulldogs bulldogs fight fight fight
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat
 that chased the bird

The dog chased the cat
 that the bird chased

The dog chased the cat
 the bird chased

The dog the bird the cat chased chased chased me

Bulldogs bulldogs bulldogs fight fight fight

(Demo)
Integer Examples
Input-Output Tables

A table containing the inputs to a function can be used to map from output to input.
Input-Output Tables

A table containing the inputs to a function can be used to map from output to input.

```sql
create table pairs as
with
  i(n) as ( 
    select 1 union 
    select n+1 from i where n < 50
  )
select a.n as x, b.n as y from i as a, i as b where a.n <= b.n;
```
Input-Output Tables

A table containing the inputs to a function can be used to map from output to input.

```
create table pairs as
    with
        i(n) as (  
            select 1 union
            select n+1 from i where n < 50
        )
    select a.n as x, b.n as y from i as a, i as b where a.n <= b.n;
```

What integers can I add/multiply together to get 24?
Input-Output Tables

A table containing the inputs to a function can be used to map from output to input

create table pairs as
 with
 i(n) as (
 select 1 union
 select n+1 from i where n < 50
)
 select a.n as x, b.n as y from i as a, i as b where a.n <= b.n;

What integers can I add/multiply together to get 24?

(Demo)
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
Example: Pythagorean Triples

All triples \(a, b, c\) such that \(a^2 + b^2 = c^2\)

with

\[
i(n) \text{ as } (\\
\quad \text{select } 1 \text{ union select } n+1 \text{ from } i \text{ where } n < 20
\)

\[
\text{select } a.n \text{ as } a, b.n \text{ as } b, c.n \text{ as } c
\]

\[
\text{from } \text{__}
\]

\[
\text{where } \text{_____________ and } a.n*a.n + b.n*b.n = c.n*c.n;
\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$

with

\[i(n) \text{ as (} \]
\[\text{select 1 union select } n+1 \text{ from i where } n < 20 \]
\[) \]

select a.n as a, b.n as b, c.n as c

from __________________________

where _____________ and a.n*a.n + b.n*b.n = c.n*c.n;
Example: Pythagorean Triples

All triples \(a, b, c\) such that \(a^2 + b^2 = c^2\)

with

\[
i(n) \text{ as } (\text{select } 1 \text{ union select } n+1 \text{ from i where } n < 20)
\]

select \(a.n\) as \(a\), \(b.n\) as \(b\), \(c.n\) as \(c\)

from ___

where ___________________ and \(a.n*a.n + b.n*b.n = c.n*c.n\);
Example: Fibonacci Sequence
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

<table>
<thead>
<tr>
<th>fibs:</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

```sql
create table fibs as

    with

        fib(previous, current) as (
            select 0, 1 union

            select current, previous+current from fib

            where current <= __________________________

        )

    select __________________________ as n from fib;

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
```
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers

create table fibs as

 with

 fib(previous, current) as (
 select 0, 1 union
 select current, previous+current from fib
 where current <= ________________
)

 select _________________ as n from fib;

<table>
<thead>
<tr>
<th>n</th>
<th>previous</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

```
create table fibs as

    with

        fib(previous, current) as ( 
            select 0, 1 union
            select current, previous+current from fib
            where current <= ______________
        )

    select ______________ as n from fib;
```

<table>
<thead>
<tr>
<th>n</th>
<th>fib: previous</th>
<th>fib: current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers

```sql
create table fibs as
    with
        fib(previous, current) as (
            select 0, 1 union
            select current, previous+current from fib
            where current <= ________________
        )
    select ________________ as n from fib;
```

<table>
<thead>
<tr>
<th>n</th>
<th>previous</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

Local table
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

```
create table fibs as

    with

        fib(previous, current) as ( 
            select 0, 1 union
            select current, previous+current from fib
            where current <= _________________________
        )

    select ___________________________ as n from fib;
```

<table>
<thead>
<tr>
<th>fibs: n</th>
<th>fib: previous</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

create table fibs as

with

 fib(previous, current) as (
 select 0, 1 union
 select current, previous+current from fib
 where current <= _____________
)

select _____________ as n from fib;

<table>
<thead>
<tr>
<th>fibs: n</th>
<th>fib: previous</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

Local table
A Very Interesting Number

The mathematician G. H. Hardy once remarked to the mathematician Srinivasa Ramanujan...
A Very Interesting Number

The mathematician G. H. Hardy once remarked to the mathematician Srinivasa Ramanujan...

(Demo)