
Tables

Announcements

Review: Select Statements Project Existing Tables

A SELECT statement specifies an input table using FROM [table]

We can optionally use [column] AS [name] to rename the input column in our new table.

Column descriptions determine how each input row is projected to a result row.

A subset of the rows can be selected (ie. filtered) using WHERE [condition]

An ordering can be declared using ORDER BY [column]

CREATE TABLE [name] AS [SELECT statement goes here];

saves the result of a SELECT statement to your database for reuse.

SQL is not capitalization or indentation sensitive! (yay)

; signals the end of your SQL statement.

3

SELECT [expression] AS [name], [expression] AS [name], ... ;

SELECT [columns] ; FROM [table] WHERE [condition] ORDER BY [order]

Joining Tables

Example: Music with Friends

5

CREATE TABLE shm_tracks AS
SELECT "360" AS track, “charli" AS artist UNION

SELECT “cinderella” , "remi" UNION

SELECT “wildflower” , “billie”;

shm_tracks:Create (and save) this short table:

Then display it with another select statement:

track artist

360 charli

cinderella remi

wildflower billie

SELECT * FROM shm_tracks;

(You can use any SQL interpreter, ex: the one on code.cs61a.org)

http://code.cs61a.org

Example: Music with Friends

6

CREATE TABLE anya_tracks AS

SELECT "apple" AS track, "charli" AS artist UNION

SELECT "taste" , "sabrina" UNION

SELECT "wildflower" , "billie";

SELECT * FROM anya_tracks;

anya_tracks:Now create (and save) this short table:

Then display it with another select statement:

track artist

apple charli

taste sabrina

wildflower billie

(tip: you can use the up arrow to reuse the last line of code you entered)

Example: Music with Friends

7

anya_tracks:

track artist

apple charli

taste sabrina

wildflower billie

track artist

360 charli

cinderella remi

wildflower billie

shm_tracks:

Challenge: Write a SELECT statement that will find and display a table of all the tracks that
these two friends have in common.

(And ideally, one that will work even if we had way more songs!)

First: How would you (as a human) do this systematically?

Idea: Take each row of the first table and compare it with every row in the second table.

How many comparisons will we make in this case?

Joining Two Tables

8

track artist
apple charli
taste sabrina

wildflower billie
apple charli
taste sabrina

wildflower billie
apple charli
taste sabrina

wildflower billie

track artist
360 charli
360 charli
360 charli

cinderella remi
cinderella remi
cinderella remi
wildflower billie
wildflower billie
wildflower billie

shm_tracks, anya_tracks:

SELECT * FROM shm_tracks,anya_tracks;

SELECT track FROM shm_tracks,anya_tracks; –> Parse error: ambiguous column name: track

Tables A & B are joined by a comma (or JOIN) to form all combos of a row from A & a row from B.
try this:

Working with our joined table will be clearer and easier if we rename the columns!

Aliases and Dot Expressions

Joining Tables that Share Column Names

10

a_track a_artist
apple charli
taste sabrina

wildflower billie
apple charli
taste sabrina

wildflower billie
apple charli
taste sabrina

wildflower billie

s_track s_artist
360 charli
360 charli
360 charli

cinderella remi
cinderella remi
cinderella remi
wildflower billie
wildflower billie
wildflower billie

SELECT
shm_tracks.track AS s_track,
shm_tracks.artist AS s_artist,

anya_tracks.track AS a_track,
anya_tracks.artist AS a_artist

FROM shm_tracks, anya_tracks;

Two tables may share a column name;
dot expressions help us disambiguate column values.

SELECT [column] FROM [table];

SELECT [table.column AS new_column_name, table.column AS new_column_name] FROM [tables];

comma-separated list of tablescomma separated list of columns with new names for each

(reminder: you can use the up arrow to reuse the last line of code you entered)

Example: Music with Friends (final)

11

a_track a_artist
apple charli
taste sabrina

wildflower billie
apple charli
taste sabrina

wildflower billie
apple charli
taste sabrina

wildflower billie

s_track s_artist
360 charli
360 charli
360 charli

cinderella remi
cinderella remi
cinderella remi
wildflower billie
wildflower billie
wildflower billie

SELECT
shm_tracks.track AS s_track, shm_tracks.artist AS s_artist,

anya_tracks.track AS a_track, anya_tracks.artist AS a_artist

FROM shm_tracks, anya_tracks

WHERE ___;s_track = a_track

How would you add to the WHERE condition such that the table also contains
any tracks with shared artists?

a_track a_artist

wildflower billie

s_track s_artist

wildflower billie

OR s_artist = a_artist

Example: Adding to a table

12

INSERT INTO <table> VALUES (<column1>, <column2>);

INSERT INTO shm_tracks VALUES ("bad guy", "billie");
INSERT INTO shm_tracks VALUES ("apple", "charli");

You can insert a new row into a table like so:

(make sure the # of values matches the # and expected order of columns!)

track artist

360 charli

apple charli

bad guy billie

cinderella remi

wildflower billie

How can I create a table like
this, showing pairs of songs

from the same artist?

track1 track2 artist

360 apple charli

bad guy wildflower billie

shm_tracks:

Joining a Table with Itself

Dot expressions and aliases help disambiguate columns from copies of the same table.

13

SELECT [columns]
FROM [table];

SELECT [alias1.column AS new_column_name, alias2.column AS new_column_name]
FROM [table AS alias1, table AS alias2];

track artist

360 charli

apple charli

bad guy billie

cinderella remi

wildflower billie

shm_tracks: (not yet joined with itself)

How many rows and columns will there be in
the table displayed by this SELECT statement?

SELECT a.track AS track1, b.track AS track2
FROM shm_tracks AS a, shm_tracks AS b;

Finding Pairs of Songs

14

SELECT a.track AS track1, b.track AS track2
FROM shm_tracks AS a, shm_tracks AS b
WHERE __;

How can I create a table like
this, showing pairs of songs

from the same artist?

track1 track2 artist

360 apple charli

bad guy wildflower billie

a.artist = b.artist AND a.track < b.track

(reminder: you can use the up arrow to reuse the last line of code you entered)

Joining Tables Example: Dog Breeder (from the videos)

15

daisy

hankcharlie

ace

bella

finn

ellie

ginger

These tables are built into the SQL interpreter on code.cs61a.org!

parent child

ace bella

ace charlie

daisy hank

ellie finn

finn ace

finn daisy

finn ginger

parents:

E

F

A D G

B C H

name fur

ace long

bella short

charlie long

daisy long

ellie short

finn curly

ginger short

hank curly

dogs:

Write a SELECT statement to display a table containing the parents of curly haired dogs.

SELECT parent FROM parents, dogs WHERE ________________________________;child = name AND fur = "curly"

http://code.cs61a.org

Joining a Table with Itself Example: Grandparents

Which select statement evaluates to all grandparent, grandchild pairs?

16

E

F

A D G

B C H

SELECT a.grandparent, b.child FROM parents AS a, parents AS b

 WHERE b.parent = a.child;

SELECT a.grandparent, b.child FROM parents AS a, parents AS b

 WHERE a.parent = b.child;

SELECT a.parent, b.child FROM parents AS a, parents AS b

 WHERE b.parent = a.child;

SELECT a.parent, b.child FROM parents AS a, parents AS b

 WHERE a.parent = b.child;

None of the above

1

2

3

4

5

Joining Multiple Tables

Multiple tables can be joined to yield all combinations of rows from each

17

E

F

A D G

B C H

Select all grandparents with the same fur as their grandchildren

SELECT grandog FROM grandparents, dogs AS c, dogs AS d

 WHERE grandog = c.name AND

 granpup = d.name AND

 c.fur = d.fur;

CREATE TABLE grandparents AS

 SELECT a.parent AS grandog, b.child AS granpup

 FROM parents AS a, parents AS b

 WHERE b.parent = a.child;

Which tables need to be joined together?

Dog Triples: Fall 2014 Quiz Question (Slightly Modified)

Write a SQL query that selects all possible combinations of three different dogs
with the same fur and lists each triple in inverse alphabetical order

18

Expected output:

daisy|charlie|ace
ginger|ellie|bella

E

F

A D G

B C H

CREATE TABLE dogs AS
 SELECT "ace" AS name, "long" AS fur UNION
 SELECT "bella" , "short" UNION
 ...;

CREATE TABLE parents AS
 SELECT "ace" AS parent, "bella" AS child UNION
 SELECT "ace" , "charlie" UNION
 ...;

(Demo)

Numerical Expressions

Numerical Expressions

Expressions can contain function calls and arithmetic operators

20

SELECT [columns] FROM [table] WHERE [expression] ORDER BY [expression];

[expression] AS [name], [expression] AS [name], ...

Combine values: +, -, *, /, %, and, or

Transform values: abs, round, not, -

Compare values: <, <=, >, >=, <>, !=, =

(Demo)

String Expressions

String Expressions

String values can be combined to form longer strings

22

sqlite> CREATE TABLE phrase AS SELECT "hello, world" AS s;
sqlite> SELECT substr(s, 4, 2) || substr(s, instr(s, " ")+1, 1) FROM phrase;
low

Strings can be used to represent structured values, but doing so is rarely a good idea

Basic string manipulation is built into SQL, but differs from Python

sqlite> SELECT "hello," || " world";
hello, world

sqlite> CREATE TABLE lists AS SELECT "one" AS car, "two,three,four" AS cdr;
sqlite> SELECT substr(cdr, 1, instr(cdr, ",")-1) AS cadr FROM lists;
two

(Demo)

