
Conclusion

Announcements

Call Expressions

Problem Definition

You can call:

- f(x): Subtracts one from x

- g(x): Doubles x

- h(x, y): Concatenates the digits of x and y.

What's the shortest expression using only f, g, h, and 5
that evaluates to 2024?

g(h(g(5),g(g(f(f(5)))))) has 7 calls

5

From Discussion 0:

5➡10 5➡4➡3➡6➡12

➡1012➡2024

A Computational Approach

6

class Number:
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return str(self.value)

 def calls(self):
 return 0

class Call:
 """A call expression."""
 def __init__(self, f, operands):
 self.f = f
 self.operands = operands
 self.value = f(*[e.value for e in operands])

 def __str__(self):
 return f'{self.f.__name__}({",".join(map(str, self.operands))})'

 def calls(self):
 return 1 + sum(o.calls() for o in self.operands)

def f(x):
 return x - 1
def g(x):
 return 2 * x
def h(x, y):
 return int(str(x) + str(y))

>>> n = Number(5)
>>> print(n)
5
>>> n.value
5
>>> Call(f, [n]).value
4

>>> h(g(f(5)), 5)
85
>>> c = Call(h, [Call(g, [Call(f, [n])]), n])
>>> print(c)
h(g(f(5)),5)
>>> c.value
85
>>> c.calls()
3

A Computational Approach

7

class Number:
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return str(self.value)

 def calls(self):
 return 0

class Call:
 """A call expression."""
 def __init__(self, f, operands):
 self.f = f
 self.operands = operands
 self.value = f(*[e.value for e in operands])

 def __str__(self):
 return f'{self.f.__name__}({",".join(map(str, self.operands))})'

 def calls(self):
 return 1 + sum(o.calls() for o in self.operands)

def smalls(n):
 "Yield all Calls and Numbers with n calls."
 if n == 0:
 yield __________
 else:
 for operand in ____________:
 yield Call(f, [operand])
 yield Call(g, [operand])
 for k in range(n):
 for first in smalls(k):
 for second in ______________:
 if first.value > 0 and second.value > 0:
 yield Call(h, _______________)

result = []
for i in range(8):
 result.extend([e for e in smalls(i) if e.value == 2024])
print(result[0]) # prints g(h(g(5),g(g(f(f(5))))))

def f(x):
 return x - 1
def g(x):
 return 2 * x
def h(x, y):
 return int(str(x) + str(y)) smalls(n-1)

[first, second]

smalls(n-k-1)

Number(5)

Course Staff

Thank you TAs!!!
We couldn’t have done it without you <3

Thank you tutors!!!
We couldn’t have done it without you <3

Thank you academic interns!!!
We couldn’t have done it without you <3
Akhil Korupolu, Alex Huang, Anuska Parajuli, Arjun Gonuguntla, Audrey Zhu,
Baha Alkhatib, Dakota Daveed Feldkamp, Dylan Dang, Evan Woo, Haoyang
Zhong, Isabella Hu, Jamie Jang, Jennifer Finkelstein, Karina Anders, Kye Lin,
Laura Sophie Grimberg, Maile Caroline Frankwick, Maria Ma, Nathan Mun, Neil
Chen, Olivia Guo, Owen Lam, Rushil Saraf, Sohum Phadke

So…why should I get involved?

• Teaching is, for lack of a better term - magical! Why? Here are a few reasons..

• Supporting those that come after you. We’re all in this together!

• Meeting some of the coolest people that Berkeley has to offer :D

• Refining your own technical understanding of course concepts

• Autonomy to explore. The classroom is a mini-laboratory of sorts.
Especially at Berkeley, course staff do a LOT (student support, writing
infrastructure, iterating on the projects)

Ok, you’ve sold me. How do I start?
• Apply to be an Academic Intern and help in a lab section, mentored by a TA.

• CS365 is a fairly new innovation that aims to standardize this experience.

• Apply directly to course staff! UCS1 (tutor) positions are a nice, gentle on-ramp to refine your
pedagogy (the way you teach) mainly through office hours and small group tutoring. You are qualified.

• If you want a quicker boost - teaching over the summer is a great way to jump directly into a UCS2
(teaching assistant) position. You get to teach your own section!

• Applications for summer usually open mid-March.

• More information here. You can join the EECS 101 EdStem for an announcement.

• Alternatively, Computer Science Mentors is a club on campus that also does small group tutoring! I
got my start teaching in CSM!

https://eecs.berkeley.edu/resources/ase/prospective/
https://edstem.org/us/join/CJtTEw

How Did We Get Here?

shm’s slide is a lot cooler. so i’m putting mine first >:D

Snapshot of Jedi’s Undergraduate Life

Junior Spring
COMPSCI 61C: Great Ideas of Computer Architecture
PBHLTH C160: Environmental Health and Development

POLSCI 103: Congress
POLSCI 171: California Politics
(and a unit for CSM and URAP)

Most of my time:

(First three years of undergrad): ASUC, City of Berkeley Commissioner,

student worker at Berkeley Law

(Last two years of undergrad): Teaching! (CSM, CS61B)

(super senior) Fall
COMPSCI 170: Efficient Algorithms and Intractable Problems

MATH 54: Linear Algebra and Differential Equations
PE 1: Hip Hop Dance

PE 3: Intermediate Volleyball

Shmundergrad: the space of undergrad courses shm found valuable

16

Classes I thought would be
really important for my career

Classes that I thought
would just be really fun

turned out
to actually
be important

for my
career

turned out to
mostly be for

fun!

(but may come
in handy one

day)

ac
tu

al
 c

ar
ee

r
im

po
rt

an
ce

(p

os
t-

gr
ad

 e
va

lu
at

io
n)

predicted career importance (pre-graduation assessment)

also super valuable & fun: research, tutoring, game design club, poetry club

networking 🛜

data structures
software engineering

algorithms

discrete structures

art history
painting
drawing

american sign language 🤟

human computer
interaction

computer
graphics

philosophy 101

concert band 📯

advanced algorithms

sociology 101

the witch in literature

Undergrad John

Intro courses galore: Philosophy, Linguistics, Economics, Computer Science, Math, etc.

The coolest thing (in my opinion): How people use and understand language to communicate

• Linguistics is the study the language and its use.

• Philosophy tries to answer questions about the world that the scientific method doesn't.

• Computers can carry out simulations of using and understanding language.

Another cool thing: How decisions are made

• Economics describes the individual & collective decisions of human beings.

• Artificial Intelligence implements automated decision making policies.

• Probability provides a language for making precise statements about uncertainty.

• Literature describes how complex people and their decisions really are.

17

Society

Automated Decision Making

19

Life

That's all. Thanks!

