Functions

Announcements

Assignment Statements

Assignment Statements

‘ An assignment statement \& ‘ assigns the value of the expression on the right

e Vi
‘ to the name on the left Fﬁﬂxi=a1 + 2

1 o)

T T Z = A
e 1 ~
R r—=Z

The expression (right) is evaluated, and its value is assigned to the name (left).

>>> X = 2

>>>y =X + 1

>>> Y

3

>>> X = 5 (Demo)
>>> Y

Environment Diagrams

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):
1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

[Built-in function]

R —— ‘
from operator import mul Global frame func mul(...) |
flel) squake) : Original name of mul e \

return mul(x, x) function called func square(x):
- i square B -
square(-2)
N i | User-defined
[Local frame }>§§square§ = function

Formal parameter

bound to argument Return value

(not a binding!)

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment

2. Bind the function's formal parameters to its arguments in that frame

3. Execute the body of the function in that new environment

from operator import mul Global frame
def square(x):

func mul(...)

mul
= return mul(x, Xx) func square(x)
square K)
square(-2) . g
oo
square
v
X |-2

A function’s signature has all the

information needed to create a local frame Return | 4
value

eturn20mu %28x, %20x%29%0Asquare%28-2%296cumu Lat ive=t ruescur Inst r=0&mode=displaysorigin=compos ingprograms.

http://pythontutor. con/compos ingprograms. html#code=fron%20operators20inport

J5&py=3&rawInputlLstISON=%5B%5D

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:
e The global frame alone, or

e A local frame, followed by the global frame.

Most important two things 10Il say all day:
An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the current
environment in which that name is found.

E.g., to look up some name in the body of the square function:
e Look for that name in the local frame.

e If not found, look for it in the global frame.
(Built-in names like “max” are in the global frame too,
but we don’'t draw them in environment diagrams.)

(Demo)

Multiple Assignment

Multiple Assignment

[]> a =1 Global frame
Just executed

b = 2

_ a 1
{Next to execute }-’ b, a=a+ b, b

b 2
a =1 Global frame

b =2

Just executed 1>

[b, a=a+b, b a 2
b 3

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the current frame.
(Demo)

http://pythontutor. con/composingprograns.)) tive=falseScurnstr=0smode=displaySorigin=composingprograns. j s&py=3&rawInputLstISON=%5B%5D

Print and None

(Demo)

Small Expressions

Problem Definition

From Discussion O:

Imagine you can call only the following three functions:

- f(x): Subtracts one from an integer x
- g(x): Doubles an integer x
- h(x, y): Concatenates the digits of two different

positive integers x and y. For example, h(789, 12)
evaluates to 78912 and h(12, 789) evaluates to 12789.

Definition: A small expression is a call expression that
contains only f, g, h, the number 5, and parentheses. All
of these can be repeated. For example, h(g(5), f(f(5))) is
a small expression that evaluates to 103.

What's the {shortest:small expression

\ , you can find that
evaluates t6"2023?"jr

Fewest calls?
Shortest length when written?

A Simple Restatement:

You start with 5. You can:
— Subtract 1 from a number
— Double a number

— Glue two numbers together

503106320
5E34E33032
5634633

Effective problem solving:

* Understand the problem

e Come up with ideas

* Turn those ideas into solutions

Searching for the Shortest

4) 2
Tiburon

R\

Cesar, '
A Chavez Park,_, —O Be";g!,eTstmE
Angel'lsland B A d
State Park erkeley' Bowl

580 9
s Berkeley Bow! West Marketplace
\ %/\

Emeryyville Marina Park €} eryv\l\I{\e

e /
~Pacific Pipe'§{
= 18 min
N © $_l§yline Sightseeing 4 139 miles :
ﬁRo/yaI Pacifi¢/Motor. Inn ol
EThe Escape Game San
Frangisco((Downtown)

Bcla JF eiling

SanjFrancisco

ROCKRIDGE

TEMESCAL

AIameda._
WEST ALAMEDA

Robert W. Crown J'"GLET
| State/Beach,’

A common strategy: try a bunch of options to see which is best

Computer programs can evaluate many alternatives by repeating simple operations

A Computational Approach

Try all the small expressions with 4 function calls, then 5 calls, then 6 calls, etc.

(] S

S MO O NN (] (S S <
MmoooNoeoOSeeSeNTdTdTHO S
T T A A A AMMOKOOOOOON N
ANNNNMANNANNANNANNANNANNNANNANNANNANNANNA
[I R I I A A I D R A R R A
e e e e e e e e e e T e e e T T
e e e e e e e e e e e e e e e T
S~ N~~~ ~ Y OO~ OO OO~ D
4 DI+ OO ~ ~ ~ =~ =~ =~ =~ =~
N N N N N N N N N S S S~ o~
pppppppp LN WL NN

PN TN TN N N N N N N N N N N N
N N N N i “ “ “ “ “ “ e e’

N N N N N N N N N N N S S N S S

AN AN AN AN AN N SN S
P N o ~ ~ ~
P e e e L S

N N N N N N N S

”””””
P N N o~ o~ o~

SN N N N N N S S
N N N N S N S S

N N N N N N N N

N TN AN TN TN TN TN AN AN AN AN AN AN AN SN S
AN TN TN AN TN TN AN AN AN AN AN AN AN AN SN S
P A P P g~
P e o o o e e o L O
N N N N N — — —k —k —mk ket ke s —
N N N N N N ke st

N N N N N N N N N N N N S S S S

N N N N N N N N N N N N N N S S

- OO%- O OO OO%- OO O OO O

f(x) subtracts 1; g(x) doubles; h(x, y) concatenates

Reminder:

A Computational Approach

Try all the small expressions with 4 function calls, then 5 calls, then 6 calls, etc.

f(g(h(g(5),g(g(f(f(5))))))) —> 2023 has 8 calls and 27 characters.
f(g(h(g(5),g(f(f(g(f(5)))))))) —> 2023 has 9 calls and 30 characters.
f(h(g(g(5)),g(g(g(f(f(5))))))) —> 2023 has 9 calls and 30 characters.
f(h(g(g(5)),h(f(f(f(5))),f(5)))) —> 2023 has 9 calls and 32 characters.
f(h(f(f(h(g(g(5)),f(5)))),f(5))) —> 2023 has 9 calls and 32 characters.
f(h(f(h(g(g(5)),f(f(5)))),f(5))) —> 2023 has 9 calls and 32 characters.
f(h(h(g(g(5)),f(f(f(5)))),f(5))) —> 2023 has 9 calls and 32 characters.
h(g(g(5)),f(g(g(g(f(f(5))))))) —> 2023 has 9 calls and 30 characters.
h(g(g(5)),f(h(f(f(f(5))),f(5)))) —> 2023 has 9 calls and 32 characters.
h(g(g(5)),h(f(f(f(5))),f(f(5)))) —> 2023 has 9 calls and 32 characters.
h(f(f(h(g(g(5)),f(5)))),f(f(5))) —> 2023 has 9 calls and 32 characters.
h(f(h(g(g(5)),f(f(5)))),f(f(5))) —> 2023 has 9 calls and 32 characters.
h(h(g(g(5)),f(f(f(5)))),f(f(5))) —> 2023 has 9 calls and 32 characters.

Reminder: f(x) subtracts 1; g(x) doubles; h(x, y) concatenates

A Computational Approach

Try all the small expressions with 4 function calls, then 5 calls, then 6 calls, etc.

def f(x): @memo <{:::::J
return x - 1 def smalls(n):

def g(x): "UUA list of all small expressions with n calls."""
return 2 * x return list(smalls_gen(n))
def h(x, y):

return int(str(x) + str(y)) 12 def smalls_gen(n):

if n == 0:
yield Number(5)
def __init__ (self, value): 1 else:

class Number:
1f.value = val for operand in smalls(n-1): <[:::::]
serf.vatue = vatue yield Call(f, [operand])

e

def str (self): 1 yield Callgg, [op?rand])
Teturn st 1f.val for k in range(1l, n-1):
return str(self.value) for first in smalls(k):
def call 1) : for second in smalls(n-k-1):
€ ?Ztuiésg) if first.value > 0 and second.value > 0:
yield Call(h, [first, second])
class Call: :
"UMA call expression.™"" ;giu}tia Einge(ll)'
def init f, f, ds): . . .
c EE{?}f_Z(ie operands) result.extend([e for e in smalls(i) if e.value == 2023])<{:::::]

self.operands = operands
self.value = f(x[e.value for e in operands])
def __str__ (self):
return f'{self.f.__name__ }({",".join(map(str, self.operands))})'

def calls(self):
return 1 + sum(o.calls() for o in self.operands)

By Midterm 2, you can do this.

