61A Extra Lecture 1
Announcements

- If you want 1 unit (pass/no pass) of credit for in CS 98-52, the CCN is 34591.
Announcements

- If you want 1 unit (pass/no pass) of credit for in CS 98–52, the CCN is 34591.
 - Only for people who really want extra work that's beyond the scope of normal CS 61A.
Announcements

• If you want 1 unit (pass/no pass) of credit for in CS 98-52, the CCN is 34591.
 ▪ Only for people who really want extra work that's beyond the scope of normal CS 61A.
• Anyone is welcome to attend the extra lectures, whether or not they enroll.
Announcements

• If you want 1 unit (pass/no pass) of credit for in CS 98-52, the CCN is 34591.
 - Only for people who really want extra work that's beyond the scope of normal CS 61A.
• Anyone is welcome to attend the extra lectures, whether or not they enroll.
• All info and materials will be posted to cs61a.org/extra.html
Newton's Method
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

A "zero" of a function f is an input x such that $f(x) = 0$.

$f(x) = x^2 - 2$
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

A "zero" of a function f is an input x such that $f(x)=0$.

$$f(x) = x^2 - 2$$

$x=1.414213562373095$
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

A "zero" of a function f is an input x such that $f(x)=0$

Application: a method for computing square roots, cube roots, etc.
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

A "zero" of a function f is an input x such that $f(x)=0$.

Application: a method for computing square roots, cube roots, etc.

The positive zero of $f(x) = x^2 - a$ is \sqrt{a}. (We're solving the equation $x^2 = a$.)
Newton's Method

Given a function f and initial guess x,

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: f(x)

Compute the derivative of f at the guess: f'(x)

Update guess x to be:

\[x = \frac{f(x)}{f'(x)} \]
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:

$$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:
 \[x - \frac{f(x)}{f'(x)} \]
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x \rightarrow x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x = \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x = \frac{f(x)}{f'(x)}$$

Finish when $f(x) = 0$ (or close enough)
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x - \frac{f(x)}{f'(x)}$$

Finish when $f(x) = 0$ (or close enough)
Using Newton's Method
Using Newton's Method

How to find the square root of 2?
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]
Using Newton's Method

How to find the square root of 2?

\[f(x) = x^2 - 2 \]

\[f'(x) = 2x \]

\[
\begin{align*}
\text{Appplies Newton's method} \\
\text{find_zero}(f, df) \\
1.4142135623730951
\end{align*}
\]
Using Newton's Method

How to find the square root of 2?

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]

\[
\begin{align*}
\text{>>> } f &= \text{lambda } x: x**2 - 2 \\
\text{>>> } df &= \text{lambda } x: 2x \\
\text{>>> } \text{find_zero}(f, df) \\
1.4142135623730951
\end{align*}
\]

How to find the cube root of 729?

Applies Newton's method
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

How to find the cube root of 729?

```python
3
V
```
Using Newton's Method

How to find the square root of 2?

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

How to find the cube root of 729?

\[g(x) = x^3 - 729 \]
\[g'(x) = 3x^2 \]

```python
>>> g = lambda x: x**3 - 729
>>> dg = lambda x: 3*x**2
>>> find_zero(g, dg)
9.0
```
Using Newton's Method

How to find the square root of 2?

$$f(x) = x^2 - 2$$
$$f'(x) = 2x$$

>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951

How to find the cube root of 729?

$$g(x) = x^3 - 729$$
$$g'(x) = 3x^2$$

>>> g = lambda x: x**3 - 729
>>> dg = lambda x: 3*x**2
>>> find_zero(g, dg)
9.0
Iterative Improvement
Special Case: Square Roots
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a
Special Case: Square Roots

How to compute $\text{square_root}(a)$

Idea: Iteratively refine a guess x about the square root of a

Update:
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

$$x = \frac{x + \frac{a}{x}}{2}$$
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: $x = \frac{x + \frac{a}{x}}{2}$

Babylonian Method
Special Case: Square Roots

How to compute $\text{square_root}(a)$

Idea: Iteratively refine a guess x about the square root of a

Update:

$$x = \frac{x + \frac{a}{x}}{2}$$

(Babylonian Method)
Special Case: Square Roots

How to compute \(\text{square_root}(a) \)

Idea: Iteratively refine a guess \(x \) about the square root of \(a \)

\[
\text{Update:} \quad x = \frac{x + \frac{a}{x}}{2}
\]

Implementation questions:
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

\[
X = \frac{X + \frac{a}{X}}{2}
\]

Implementation questions:

What guess should start the computation?
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

$\text{Update: } x = \frac{x + \frac{a}{x}}{2}$

Implementation questions:

What guess should start the computation?

How do we know when we are finished?
Special Case: Cube Roots
Special Case: Cube Roots

How to compute $\text{cube_root}(a)$

Idea: Iteratively refine a guess x about the cube root of a
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:
Special Case: Cube Roots

How to compute $\text{cube}_\text{root}(a)$

Idea: Iteratively refine a guess x about the cube root of a

Update:

$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$
Special Case: Cube Roots

How to compute $\text{cube_root}(a)$

Idea: Iteratively refine a guess x about the cube root of a

Update:

$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$ \hspace{1cm} \text{(Demo)}$$
Special Case: Cube Roots

How to compute \texttt{cube_root}(a)

\textbf{Idea:} Iteratively refine a guess \(x \) about the cube root of \(a \)

Update: \[x = \frac{2 \cdot x + \frac{a}{x^2}}{3} \] (Demo)

\textbf{Implementation questions:}
Special Case: Cube Roots

How to compute $\text{cube_root}(a)$

Idea: Iteratively refine a guess x about the cube root of a

Update:

$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$

Implementation questions:

What guess should start the computation?
Special Case: Cube Roots

How to compute $\text{cube_root}(a)$

Idea: Iteratively refine a guess x about the cube root of a

Update:

$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$

(Demo)

Implementation questions:

What guess should start the computation?

How do we know when we are finished?
Implementing Newton's Method

(Demo)
Extensions
Approximate Differentiation
Approximate Differentiation
Approximate Differentiation

Differentiation can be performed symbolically or numerically

![Graph showing approximate differentiation](image-url)
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically.

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]
\[f'(x) = 2x \]
\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically.

\[f(x) = x^2 - 16 \]
\[f'(x) = 2x \]
\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]
\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]
\[f'(x) = 2x \]
\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]

\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \quad \text{(if } a \text{ is small)} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]
\[f'(x) = 2x \]
\[f'(2) = 4 \]

\[
\begin{align*}
f'(x) &= \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \\
f'(x) &\approx \frac{f(x + a) - f(x)}{a} \quad \text{(if } a \text{ is small)}
\end{align*}
\]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]

\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \quad \text{(if } a \text{ is small)} \]
Approximate Differentiation

Differentiation can be performed symbolically or numerically

\[f(x) = x^2 - 16 \]

\[f'(x) = 2x \]

\[f'(2) = 4 \]

\[f'(x) = \lim_{a \to 0} \frac{f(x + a) - f(x)}{a} \]

\[f'(x) \approx \frac{f(x + a) - f(x)}{a} \quad \text{(if } a \text{ is small)} \]

(Demo)
Critical Points and Inverses
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0.
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0.
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

(Demo)
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

(Demo)

The inverse $f^{-1}(y)$ of a differentiable, one-to-one function computes the value x such that $f(x) = y$
Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0.

\[(\text{Demo})\]

The inverse $f^{-1}(y)$ of a differentiable, one-to-one function computes the value x such that $f(x) = y$.

\[(\text{Demo})\]

http://upload.wikimedia.org/wikipedia/commons/f/fd/Stationary_vs_inflection_pts.svg