Preliminaries

Today, we're going to learn how to add & multiply. Exciting!

Let's add two positive n-bit integers ($n = 8$ here):

Carry: 1 111111
Augend: 10110111
Addend: + 10011101

Sum: 101010100

This is called ripple-carry addition. Some questions:

1. How big can the sum be (at most)? What is the worst case?
2. How long does summation take in the worst case? Why?

...we'll come back to this!

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)
First description of “MIMD” parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea
First theory of computation by Alan Turing in 1936
First electronic analog computer created in 1942 for bombing in WWII
First electronic digital computer created in 1943 ⇒ Electronic Numerical Integrator and Computer (ENIAC)
First description of parallel programs in 1958 (Stanley Gill)
First multiprocessor system (Multics) in 1969
Lots of parallel computing research starting in 1970s... then faded away
Multi-core systems reinvigorated parallel computing around 2001

Terminology

Some basic terminology:

- **Process**: A running program
 Processes cannot access each others' memory by default
- **Thread**: A unit of program flow
 (N threads → n independent executions of code)
 Threads maintain their own execution contexts in a given process
- **Thread context**: All the information a thread needs to run code
 This includes the location of the code that it is currently being executing, as well as its current stack frame (local variables, etc.)
- **Concurrency**: Overlapping operations (X begins before Y ends)
- **Parallelism**: Simultaneously-occurring operations (multiple operations happening at the same time)

Concurrent operations are always concurrent by definition
Concurrency allows you to avoid stopping one thing before starting another, and can occur on a single processor

Threads becomes problematic to handle
Rich literature, e.g. actor-based models of computation (MoC) such as discrete-event, synchronous-reactive, synchronous dataflow, etc. for analyzing/designing systems with guaranteed performance or reliability

Concepts

Distributed computation (running on multiple machines) is more difficult:

- Needs fault-tolerance (more machines = higher failure probability)
- Lack of shared memory
- More limited communication bandwidth (network slower than RAM)
- Time becomes problematic to handle

Threading example:

```python
import threading
t = threading.Thread(target=print, args=('a',))
t.start()
print('b') # may print 'b' before or after 'a'
t.join() # wait for t to finish
```
Threading

Race condition: When a thread attempts to access something being modified by another thread. **Race conditions are generally bad.**

Example:
```python
import threading
lst = [0]
def f():
    lst[0] += 1  # write 1 might occur after read 2
t = threading.Thread(target=f)
t.start()
t.join()
assert lst[0] in {1, 2}  # could be any of these!
```

Concurrency Control

Sadly, in CPython, multithreaded operations **cannot** occur in parallel, because there is a “global interpreter lock” (GIL). Therefore, Python code cannot be sped up in CPython.

To obtain parallelism in CPython, you can use multiprocessing: running another copy of the program and communicating with it. Python, IronPython, etc. can run Python in parallel, and most other languages support parallelism as well.

Inter-Thread and Inter-Process Communication (IPC)

Message-passing example for parallelizing $f(x) = x^2$:

```python
from multiprocessing import Process, Queue
def f(q_in, q_out):
    while True:
        x = q_in.get()
        if x is None: break
        q_out.put(x ** 2)
if __name__ == '__main__':
    q1, q2 = Queue(), Queue()
    p1 = Process(target=f, args=(q1, q2))
p1.start()
    for i in range(10):
        q1.put(i)  # send inputs
    q1.put(None)  # notify finished
    p1.join()
```

Addition

Let’s go back to addition.

We have two n-bit numbers to add.

What if we take the same approach for $+$ as for XOR?

- Split each n-bit number into p pieces
- Add each n/p-bit pair of numbers independently
- Put back the bits together
- ...
- Profit? No? **What’s wrong?**

We need to propagate carries! How long does it take? $\Theta(n)$ time (How) can we do better?

Concurrency Control

Mutex (Lock in Python): Object that can prevent concurrent access (mutual-exclusion). Example:

```python
import threading
lock = threading.Lock()
lst = [0]
def f():
    lock.acquire()  # waits for mutex to be available
    lst[0] += 1     # only one thread may run this code
    lock.release()  # makes mutex available to others
    t = threading.Thread(target=f)
t.start()
t.join()
```

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- **Shared memory:** mutating shared objects (if all on 1 machine)
 - Pros: Reduces copying of data (faster/less memory)
 - Cons: Must block execution until lock is acquired (slow)
- **Message-passing:** sending data through thread-safe queues
 - Pros: Queue can buffer & work asynchronously (faster)
 - Cons: Increases need to copy data (slower/more memory)
- **Pipes:** synchronous version of message-passing (“rendezvous”)

Addition

Common parallelism technique: **divide-and-conquer**

- Divide problem into separate subproblems
- Solve subproblems in parallel
- Merge sub-results into main result

XOR (and AND, and OR) are easy to parallelize:

- Split each n-bit number into p pieces
- XOR each n/p-bit pair of numbers independently
- Put back the bits together

Can we do something similar with addition?

Addition

Key idea #1: A carry can be either 0 or 1... and we add different pieces in parallel... and then select the correct one based on carry! This is called a carry-select adder.

Key idea #2: We can do this recursively. This is called a conditional-sum adder.

How fast is a conditional-sum adder?

- Running time is proportional to maximum propagation depth
- We solve two problems of half the size simultaneously
- We combine solutions with constant extra work
- Therefore, parallel running time is $\Theta(n \log n)$

However, we do more work: $T(n) = 2T(n/2) + c = \Theta(n \log n)$
Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)
- Kogge–Stone adder ("parallel-prefix" CLA; widely used)
- Brent-Kung adder
- Han–Carlson adder
- Lynch–Swartzlander spanning tree adder (fastest?)

...I don’t know them. But $\Theta(\log n)$ is already asymptotically optimal. :-)

Some algorithms are better suited for hardware due to lower “fan-out”: e.g. 1 bit is too “weak” to drive 16 bits all by itself.

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth
- There are n additions
- Divide-and-conquer therefore takes $\Theta(\log n)$ additions
- Each addition takes $\Theta(\log n)$ depth
- Total depth is therefore $\Theta((\log n)^2)$

...can we do better? :-) How?

```
Parallel Prefix

There isn’t too much special about addition from basic arithmetic. Often the same tricks apply to any binary operator $\oplus$ that is associative!
Parallel addition can be generalized this way, called "parallel prefix":
- Say we want to compute cumulative sum of 1, 2, 3, ...
- First, group into binary tree: $(((1 (2 (3 4))) ((5 6) (7 8)) ...$)
- Then, evaluate sums for all nodes recursively toward root
- Finally, propagate sums back down from root to right-hand children

This is a very flexible operation, useful as a basic parallel building block. (More notes can be found on MIT’s website.)
```

Parallel map is easy in Python!
```
>>> import math
>>> from multiprocessing import Pool
>>> pool = Pool()
>>> pool.map(math.sqrt, [1, 2, 3, 4])
[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]
```

This a higher-level threading construct that makes your life simpler.

A common pattern for parallel data processing is:
```
from functools import reduce
outputs = map(lambda x: ..., inputs)
result = reduce(lambda r, x: ..., outputs, initial)
```

Transformations assumed to ignore order (to allow parallelism)
Not everything fits into a MapReduce model
- Inputs may be generated on the fly
- Mappers might depend on many inputs
- Mappers may need lots of communication
- Computation may not be nicely “layered” at all
- ...

Parallel & distributed computation still an open research problem.