Regular Languages

The following are regular languages over the alphabet Σ:
- \emptyset (empty language)
- $\{\}$ (empty string)
- σ (any element in the alphabet Σ)
- $\{\sigma\}$ (set containing the element σ)
- $A \cup B$ (union of any regular languages A and B)
- $A \cup B$ (concatenation of any regular languages A and B)
- $\alpha^+ = \{\epsilon\} \cup A \cup AA \cup AAA \cup \ldots$ (repetition of regular language A)

Notice that all finite languages are regular, but not all infinite languages.

Regular languages do not allow arbitrary “nesting” (e.g. parens).

Formal Languages

In formal language theory:
- Alphabet: any set (usually a character set, like English or ASCII)
- Letter: an element in the given alphabet, e.g. "a"
- String (or word): finite sequence of letters, e.g. "hi"
- Language: a set of strings, e.g. \{"a", "aa", "aaa", \ldots\}

We might omit the quotes/braces, so we'll use the following denotations:
- ϵ: empty string (i.e., "")
- δ: empty language (i.e., empty set \{\})
A regular expression is an easier way to describe a regular language. It's essentially a pattern for describing a regular language.

For example, in \([ab-c-z]\)\(^*(1+2|3)\)?\(^4\)?\(^7\), we have:
- \([ab-c-z]\) (a character set) means "either a, b, c, u, x, y, or z".
- Asterisk (a.k.a. "Kleene star"); a quantifier means "zero or more"
- Plus (another quantifier) means "one or more"
- Question mark (another quantifier) means "at most one"
- Backslash ("escape") before a special character means it's a literal character
- Pipe (the OR symbol) means "either", and parentheses group

Notice the transition function \(\delta\) outputs a set with exactly one state (a singleton).

In a deterministic finite automaton (DFA), the transition function always outputs a set with exactly one state (a singleton).

In a nondeterministic finite automaton (NFA), the above is not true.

Regular Expressions

Python has a regex engine to find text matching a regex:

```python
>>> import re
>>> n = n = re.match(r'[^0-9-]+\d[^0-9-]+', 'hello cs61a@berkeley.edu cs698-52')
>>> n
<re.Match object; span=(0, 24),
match='hello cs61a@berkeley.edu'>
```

Notice that these could all be handled by re.match:
- Substring search (`str.find`)
- Subsequence search (`re.match`)

The grep tool (from ed’s g/regex/p — global/regex/print) does this for files.

Million-dollar question:

How do you find text matching a regex?

Two steps:
- Parse the regex (pattern) to "understand" its structure
- Use the regex to parse the actual text (corpus)

It turns out that:
- Step 1 is theoretically harder, but practically easier.
 (This can be done similarly to how you parsed Scheme.)
- Step 2 is theoretically easier, but practically harder.

This is because we need parsing the corpus to be fast.

Finite Automata

A finite automation (FA) consists of the following (example below)\(^2\):

- An input alphabet \(\Sigma = \{0, 1\}\) (here)
- A finite set of states \(S = \{s_0, s_1, s_2\}\) (here)
- An initial state \(s_0 \in S\) (here)
- A set of accepting (or final) states \(F \subseteq S = \{s_2\}\) (here)
- A transition function \(\delta : S \times \Sigma \rightarrow 2^S\) (the arrows here)

Notice the transition function \(\delta\) outputs a subset of states.

In a deterministic finite automaton (DFA), the transition function always outputs a set with exactly one state (a singleton).

i.e., in a DFA, the next state is determined by the input & current state. (i.e., every state has exactly 1 arrow leaving it for each possible input.)

In a nondeterministic finite automaton (NFA), the above is not true.

Finite Automata

Finite automata are language recognizers: you feed a string as an input, and if it accepts the input string, the string is in its language.\(^3\)

In particular:
- \(\Rightarrow\) Finite automata recognize regular languages, and nothing else

Therefore, we can:
- Convert regex pattern to FA
- Feed corpus to FA in linear time!
- ...
- Profit!

But how can we do this?

\(^1\)From wikipedia: A long-enough input must contain a repeatable substring. (Why?)

\(^2\)Note that as FA is not quite the same thing as a finite-state machine (FSM).

\(^3\)Million-dollar question: How do you find text matching a regex?
Consider: \((a|b)^*(1+2|3)\). Ask: Where in the pattern can we be?

- \(s_0 = \bullet(a|b)^*(1+2|3) = \bullet(a|b)^*(1+2|3) = \bullet(a|b)^*\cdot(1+2|3)\)
- \(s_1 = (a|b)\cdot(1+2|3) = (a|b)\cdot(1+2|3)\cdot = (a|b)^*\cdot(1+2|3)\)
- \(s_2 = (a|b)^*(1+2|3)\cdot = (a|b)^*(1+2|3)\cdot = (a|b)^*\cdot(1+2|3)\cdot = (a|b)^*\cdot(1+2|3)\cdot\cdot\cdot\)

(Expanding a state to its equivalents is a mathematical closure operation.)

Conclusion

This is just the tip of the iceberg for string algorithms (and automata). Languages, grammars, and automata are also used in computational linguistics, computational biology/genomics (DNA alignment/matching)...

It is extremely easy to graduate and avoid languages & automata. But they provide the keys for solving many otherwise difficult problems. You can see more in EE/CS 144, 149, 151, 164, 172, 219C, 291E...

--- Related Words of Wisdom ---

- Kleene is next to Godelness.

Thank you!