
CS 61A Tree Recursion & Lists
Spring 2020 Discussion 4: February 19, 2020

1 Tree Recursion
Consider a function that requires more than one recursive call. A simple

example is the recursive fibonacci function:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than

one recursive call in its recursive case. If we draw out the recursive calls, we

see the recursive calls in the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, prob-

lems that are naturally solved using tree recursive procedures are generally

difficult to write iteratively. It is sometimes the case that a tree recursive

problem also involves iteration: for example, you might use a while loop to

add together multiple recursive calls.

As a general rule of thumb, whenever you need to try multiple possibilities

at the same time, you should consider using tree recursion.



2 Tree Recursion & Lists

Questions
1.1 You want to go up a flight of stairs that has n steps. You can either take 1

or 2 steps each time. How many different ways can you go up this flight of

stairs? Write a function count_stair_ways that solves this problem. Assume

n is positive.

Before we start, what’s the base case for this question? What is the simplest

input?

What do count_stair_ways(n - 1) and count_stair_ways(n - 2) repre-

sent?

Fill in the code for count stair ways:

def count_stair_ways(n):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Tree Recursion & Lists 3

1.2 Consider a special version of the count_stairways problem, where instead

of taking 1 or 2 steps, we are able to take up to and including k steps at

a time.

Write a function count_k that figures out the number of paths for this sce-

nario. Assume n and k are positive.

def count_k(n, k):

"""

>>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1

4

>>> count_k(4, 4)

8

>>> count_k(10, 3)

274

>>> count_k(300, 1) # Only one step at a time

1

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Tree Recursion & Lists

2 Lists
A sequence is an ordered collection of values. It has two fundamental prop-

erties: length and element selection. In this discussion, we’ll explore one of

Python’s data types, the list, which implements this abstraction.

In Python, we can have lists of whatever values we want, be it numbers,

strings, functions, or even other lists! Furthermore, the types of the list’s

contents need not be the same. In other words, the list need not be homoge-

nous.

Lists can be created using square braces. Their elements can be accessed

(or indexed) with square braces. Lists are zero-indexed: to access the first

element, we must index at 0; to access the ith element, we must index at

i− 1.

We can also index with negative numbers. These begin indexing at the end

of the list, so the index −1 is equivalent to the index len(list) - 1 and

index −2 is the same as len(list) - 2.

Let’s try out some indexing:

>>> fantasy_team = ['aaron rodgers', 'desean jackson']

>>> print(fantasy_team)

['aaron rodgers', 'desean jackson']

>>> fantasy_team[0]

'aaron rodgers'

>>> fantasy_team[len(fantasy_team) - 1]

'desean jackson'

>>> fantasy_team[-1]

'desean jackson'

List Slicing
If we want to access more than one element of a list at a time, we can use

a slice. Slicing a sequence is very similar to indexing. We specify a starting

index and an ending index, separated by a colon. Python creates a new

list with the elements from the starting index up to (but not including) the

ending index.

We can also specify a step size, which tells Python how to collect values for

us. For example, if we set step size to 2, the returned list will include every

other value, from the starting index until the ending index. A negative step

size indicates that we are stepping backwards through a list when collecting

values.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Tree Recursion & Lists 5

You can also choose not to specify any/all of the slice arguments. Python

will perform some default behaviour if this is the case:

• If the step size is left out, the default step size is 1.

• If the start index is left out, the default start index is the beginning of

the list.

• If the end index is left out, the default end index is the end of the list.

• If the step size is negative, the default start index becomes the end of

the list, and the default end index becomes the beginning of the list.

Thus, lst[:] creates a list that is identical to lst (a copy of lst). lst[::-1]

creates a list that has the same elements of lst, but reversed. Those rules

still apply if more than just the step size is specified e.g. lst[3::-1].

>>> directors = ['jenkins', 'spielberg', 'bigelow', 'kubrick']

>>> directors[:2]

['jenkins', 'spielberg']

>>> directors[1:3]

['spielberg', 'bigelow']

>>> directors[1:]

['spielberg', 'bigelow', 'kubrick']

>>> directors[0:4:2]

['jenkins', 'bigelow']

>>> directors[::-1]

['kubrick', 'bigelow', 'spielberg', 'jenkins']

List Comprehensions
A list comprehension is a compact way to create a list whose elements are

the results of applying a fixed expression to elements in another sequence.

[<map exp> for <name> in <iter exp> if <filter exp>]

It might be helpful to note that we can rewrite a list comprehension as an

equivalent for statement. See the example to the right.

Let’s break down an example:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a

series of operations to our initial sequence [1, 2, 3, 4, 5]. We only keep

the elements that satisfy the filter expression x % 2 == 1 (1, 3, and 5). For

each retained element, we apply the map expression x*x - 3 before adding

it to the new list that we are creating, resulting in the output [-2, 6, 22].

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Tree Recursion & Lists

Note: The if clause in a list comprehension is optional.

Questions
2.1 What would Python display?

>>> a = [1, 5, 4, [2, 3], 3]

>>> print(a[0], a[-1])

>>> len(a)

>>> 2 in a

>>> 4 in a

>>> a[3][0]

2.2 Write a function that takes a list s and returns a new list that keeps only

the even-indexed elements of s and multiplies them by their corresponding

index.

def even_weighted(s):

"""

>>> x = [1, 2, 3, 4, 5, 6]

>>> even_weighted(x)

[0, 6, 20]

"""

return [_________________________________________________]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Tree Recursion & Lists 7

2.3 Write a function that takes in a list and returns the maximum product that

can be formed using nonconsecutive elements of the list. The input list will

contain only numbers greater than or equal to 1.

def max_product(s):

"""Return the maximum product that can be formed using non-consecutive

elements of s.

>>> max_product([10,3,1,9,2]) # 10 * 9

90

>>> max_product([5,10,5,10,5]) # 5 * 5 * 5

125

>>> max_product([])

1

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



1

1. Whole Numbers

(a) A hole number is a number in which every other digit dips below the digits immediately adjacent to it.
For example, the number 968 would be considered a hole number because the number 6 is smaller than
both of its surrounding digits. Assume that we only pass in numbers that have an odd number of digits.
Define the following function so that it properly identifies hole numbers.

def check_hole_number(n):
"""
>>> check_hole_number(123)
False
>>> check_hole_number(3241968)
True
>>> check_hole_number(3245968)
False
"""

if _________________________________________________________:

return _________________________________________________________

return ______________________________________________________________

(b) Define the following function so that it properly identifies mountain numbers. A mountain number is a
number that either
i. has digits that strictly decrease from right to left OR strictly increase from right to left
ii. has digits that increase from right to left up to some point in the middle of the number (not necessarily

the exact middle digit). After reaching the maximum digit, the digits to the left of the maximum
digit should strictly decrease.

def check_mountain_number(n):
"""
>>> check_mountain_number(103)
False
>>> check_mountain_number(153)
True
>>> check_mountain_number(123456)
True
>>> check_mountain_number(2345986)
True
"""

def helper(_________________________________________________________):

if _________________________________________________________:

return _________________________________________________________

if _________________________________________________________:

return _________________________________________________________

return _________________________________________________________

return helper(_________________________________________________________)


	Tree Recursion
	Lists

