1 Orders of Growth

When we talk about the efficiency of a function, we are often interested in the following: as the size of the input grows, how does the runtime of the function change? And what do we mean by “runtime”?

- \texttt{square}(1) requires one primitive operation: \(\ast\) (multiplication). \texttt{square}(100) also requires one. No matter what input \(n\) we pass into \texttt{square}, it always takes one operation.

\begin{tabular}{|c|c|c|c|}
\hline
input & function call & return value & number of operations \\
\hline
1 & \texttt{square}(1) & 1 \cdot 1 & 1 \\
2 & \texttt{square}(2) & 2 \cdot 2 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
100 & \texttt{square}(100) & 100 \cdot 100 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
\hline
n & \texttt{square}(n) & n \cdot n & 1 \\
\hline
\end{tabular}

- \texttt{factorial}(1) requires one multiplication, but \texttt{factorial}(100) requires 100 multiplications. As we increase the input size of \(n\), the runtime (number of operations) increases linearly proportional to the input.

\begin{tabular}{|c|c|c|c|}
\hline
input & function call & return value & number of operations \\
\hline
1 & \texttt{factorial}(1) & 1 \cdot 1 & 1 \\
2 & \texttt{factorial}(2) & 2 \cdot 1 \cdot 1 & 2 \\
\vdots & \vdots & \vdots & \vdots \\
100 & \texttt{factorial}(100) & 100 \cdot 99 \cdots 1 \cdot 1 & 100 \\
\vdots & \vdots & \vdots & \vdots \\
\hline
n & \texttt{factorial}(n) & n \cdot (n - 1) \cdots 1 \cdot 1 & n \\
\hline
\end{tabular}

For expressing complexity, we use what is called big \(\Theta\) (Theta) notation. For example, if we say the running time of a function \texttt{foo} is in \(\Theta(n^2)\), we mean that the running time of the process will grow proportionally with the square of the size of the input as it increases to infinity.
- **Ignore lower order terms**: If a function requires \(n^3 + 3n^2 + 5n + 10 \) operations with a given input \(n \), then the runtime of this function is \(\Theta(n^3) \). As \(n \) gets larger, the lower order terms (10, 5n, and 3n^2) all become insignificant compared to \(n^3 \).

- **Ignore constants**: If a function requires 5n operations with a given input \(n \), then the runtime of this function is \(\Theta(n) \). We are only concerned with how the runtime grows asymptotically with the input, and since 5n is still asymptotically linear; the constant factor does not make a difference in runtime analysis.

Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:

- \(\Theta(1) \) — constant time takes the same amount of time regardless of input size
- \(\Theta(\log n) \) — logarithmic time
- \(\Theta(n) \) — linear time
- \(\Theta(n \log n) \) — linearithmic time
- \(\Theta(n^2), \Theta(n^3), \text{etc.} \) — polynomial time
- \(\Theta(2^n), \Theta(3^n), \text{etc.} \) — exponential time (considered “intractable”; these are really, really horrible)

In addition, some programs will never terminate if they get stuck in an infinite loop.
Questions

What is the order of growth for the following functions?

1.1 `def sum_of_factorial(n):
 if n == 0:
 return 1
 else:
 return factorial(n) + sum_of_factorial(n - 1)

Θ(n^2), we will call factorial n times with arguments n, n-1, n-2, ..., 0. The sum from 0 to n is approximately n^2.

1.2 `def fib_recursive(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib_recursive(n - 1) + fib_recursive(n - 2)

Θ(Φ^n), where Φ is the golden ratio. As long as you understand the runtime is exponential in n, we would accept your answer.

1.3 `def fib_iter(n):
 prev, curr, i = 0, 1, 0
 while i < n:
 prev, curr = curr, prev + curr
 i += 1
 return prev

Θ(n), since the while loop executes n times with each iteration taking a constant Θ(1) time.

1.4 `def bonk(n):
 total = 0
 while n >= 2:
 total += n
 n = n / 2
 return total

Θ(log(n)), because our while loop iterates at most log(n) times, due to n being halved in every iteration.
1.5 `def` `mod_7(n)`:
 `if` `n % 7 == 0:`
 `return` `0`
 `else:`
 `return 1 + mod_7(n - 1)`

\(\Theta(1) \), since at worst it will require 6 recursive calls to reach the base case. So this is \(\Theta(6) \), which can be reduced to \(\Theta(1) \).

1.6 `def` `bar(n)`:
 `if` `n % 2 == 1:`
 `return n + 1`
 `return n`

def` `foo(n)`:
 `if` `n < 1`:
 `return 2`
 `if` `n % 2 == 0:`
 `return foo(n - 1) + foo(n - 2)`
 `else:`
 `return 1 + foo(n - 2)`

What is the order of growth of `foo(bar(n))`?
\(\Theta(n^2) \)

2 Nonlocal

Until now, you’ve been able to access variables in parent frames, but you have not been able to modify them. The `nonlocal` keyword can be used to modify a variable in the parent frame outside the current frame. For example, consider `stepper`, which uses `nonlocal` to modify `num`:

def` `stepper(num)`:
 `def` `step()`:
 `nonlocal num` # declares num as a nonlocal variable
 num = num + 1 # modifies num in the stepper frame
 `return` num
 `return` step

However, there are two important caveats with `nonlocal` variables:

- **Global variables** cannot be modified using the `nonlocal` keyword.
- **Variables in the current frame** cannot be overridden using the `nonlocal`
keyword. This means we cannot have both a local and nonlocal variable with the same names in a single frame.
Questions

2.1 Draw the environment diagram for the following code.

```python
def stepper(num):
    def step():
        nonlocal num
        num = num + 1
        return num
    return step

s = stepper(3)
s()
s()
```

![Environment Diagram](image-url)
2.2 (Fall 2016) Draw the environment diagram for the following code.

```python
lamb = 'da'
def da(da):
    def lamb(lamb):
        nonlocal da
        def da(nk):
            da = nk + ['da']
            da.append(nk[0:2])
            return nk.pop()
        da(lamb)
    return da([[1], 2]) + 3

da(lambda da: da(lamb))
```

2.3 Write a function that updates and prints a value \(x \) based on input functions.

```python
def memory(n):
    ""
    >>> f = memory(10)
    >>> f = f(lambda x: x * 2)
    20
    >>> f = f(lambda x: x - 7)
    13
    >>> f = f(lambda x: x > 5)
    True
    ""
    
    def f(g):
        nonlocal n
        n = g(n)
        print(n)
        return f
    return f
```

3 Mutable Lists

Let's imagine you order a mushroom and cheese pizza from La Val's, and that they represent your order as a list.

A couple minutes later, you realize that you really want onions on the pizza. Based on what we know so far, La Val's would have to build an entirely new list to add onions:

```python
>>> pizza2 = pizza1 + ['onions']  # creates a new python list
>>> pizza2
['cheese', 'mushrooms', 'onions']
>>> pizza1  # the original list is unmodified
['cheese', 'mushrooms']
```

But this is silly, considering that all La Val's had to do was add onions on top of `pizza1` instead of making an entirely new `pizza2`.

Python actually allows you to *mutate* some objects, including lists and dictionaries. Mutability means that the object's contents can be changed. So instead of building a new `pizza2`, we can use `pizza1.append('onions')` to mutate `pizza1`.
>>> pizza1.append('onions')
>>> pizza1
['cheese', 'mushrooms', 'onions']

Although lists and dictionaries are mutable, many other objects, such as numeric types, tuples, and strings, are immutable, meaning they cannot be changed once they are created. We can use the familiar indexing operator to mutate a single element in a list. For instance lst[4]='hello' would change the fifth element in lst to be the string 'hello'. In addition to the indexing operator, lists have many mutating methods. List methods are functions that are bound to a specific list. Some useful list methods are listed here:

1. **append(el)** adds el to the end of the list

2. **insert(i, el)** insert el at index i (does not replace element but adds a new one)

3. **remove(el)** removes the first occurrence of el in list, otherwise errors

4. **pop(i)** removes and returns the element at index i
Questions

3.1 Consider the following definitions and assignments and determine what Python would output for each of the calls below \textit{if they were evaluated in order}. It may be helpful to draw the box and pointers diagrams to the right in order to keep track of the state.

(a) >>> lst1 = [1, 2, 3]
 >>> lst2 = [1, 2, 3]
 >>> lst1 == lst2 # compares each value
 True

(b) >>> lst1 is lst2 # compares references
 False

c) >>> lst2 = lst1
 >>> lst1.append(4)
 >>> lst1
 [1, 2, 3, 4]

d) >>> lst2
 [1, 2, 3, 4]

e) >>> lst1 = lst1 + [5]
 >>> lst1 == lst2
 False

(f) >>> lst1
 [1, 2, 3, 4, 5]

g) >>> lst2
 [1, 2, 3, 4]

(h) >>> lst2 is lst1
 False
3.2 Write a function that takes in two values x and el, and a list, and adds as many el’s to the end of the list as there are x’s.

```python
def add_this_many(x, el, lst):
    """ Adds el to the end of lst the number of times x occurs in lst."
    >>> lst = [1, 2, 4, 2, 1]
    >>> add_this_many(1, 5, lst)
    >>> lst
    [1, 2, 4, 2, 1, 5, 5]
    >>> add_this_many(2, 2, lst)
    >>> lst
    [1, 2, 4, 2, 1, 5, 5, 2, 2]
    """

    count = 0
    for element in lst:
        if element == x:
            count += 1
    while count > 0:
        lst.append(el)
        count -= 1
```

3.3 Reverse a list in place, i.e. mutate the given list itself, instead of returning a new list.

```python
def reverse(lst):
    """ Reverses lst in place."
    >>> x = [3, 2, 4, 5, 1]
    >>> reverse(x)
    >>> x
    [1, 5, 4, 2, 3]
    """

    for i in range(len(lst) // 2):
        lst[i], lst[-i - 1] = lst[-i - 1], lst[i]
```