
CS 61A Mutability, Iterators, Generators
Summer 2025 Discussion 5: July 10, 2025

Mutability
There are many built-in methods that we can use to mutate lists. Here are some of the most useful ones:

• append(el): Appends el to the end of the list and returns None.
• extend(lst): Extends the list by concatenating it with lst and returns None.
• remove(el): Removes the first occurence of el from the list and returns None.
• insert(i, el): Inserts el at index i and returns None.
• pop(i): Removes and returns the element at index i. If no index is given, removes and returns the last element

in the list.

Let’s see these methods in action:

>>> l = [3, 5, 6]
>>> l.append(10) # Append 10 to the end of the list
>>> l
[3, 5, 6, 10]
>>> l.extend([30, 40])
>>> l
[3, 5, 6, 10, 30, 40]
>>> l.remove(5) # Remove the first occurrence of 5
>>> l
[3, 6, 10, 30, 40]
>>> l.insert(2, -2) # Insert -2 at index 2
>>> l
[3, 6, -2, 10, 30, 40]
>>> l.pop() # Remove and return the last element
40
>>> l
[3, 6, -2, 10, 30]
>>> l.pop(2) # Remove and return the element at index 2
-2
>>> l
[3, 6, 10, 30]

Take note of two things:

• The name l refers to the same list object during this entire session; it is never reassigned. The reason the
output looks different each time we call a method is because the list that l evaluates to is being mutated.

• The only method here that has a return value is pop! All of the other methods return None.

2 Mutability, Iterators, Generators

Q1: Copying Copies

Draw the environment diagram on paper or a tablet (without having the computer draw it for you)! Then, check
your work by stepping through the diagram with PythonTutor

def chain(g):
g(True, g)

def add_copy(p, then):
copy = result
if p:

copy.append(1)
result.append(list(copy))
return then(not p, add_copy)

else:
copy.append(2)

result = [5]
chain(add_copy)
print(result)

See the web version of this resource for the environment diagram.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators, Generators 3

Iterators
An iterable is any value that can be iterated through, or gone through one element at a time. One construct that
we’ve used to iterate through an iterable is a for statement:

for elem in iterable:
do something

In general, an iterable is an object on which calling the built-in iter function returns an iterator. An iterator is
an object on which calling the built-in next function returns the next value.

For example, a list is an iterable value.

>>> s = [1, 2, 3, 4]
>>> next(s) # s is iterable, but not an iterator
TypeError: 'list' object is not an iterator
>>> t = iter(s) # Creates an iterator
>>> t
<list_iterator object ...>
>>> next(t) # Calling next on an iterator
1
>>> next(t) # Calling next on the same iterator
2
>>> next(iter(t)) # Calling iter on an iterator returns itself
3
>>> t2 = iter(s)
>>> next(t2) # Second iterator starts at the beginning of s
1
>>> next(t) # First iterator is unaffected by second iterator
4
>>> next(t) # No elements left!
StopIteration
>>> s # Original iterable is unaffected
[1, 2, 3, 4]

You can also use an iterator in a for statement because all iterators are iterable. But note that since iterators keep
their state, they’re only good to iterate through an iterable once:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Mutability, Iterators, Generators

>>> t = iter([4, 3, 2, 1])
>>> for e in t:
... print(e)
4
3
2
1
>>> for e in t:
... print(e)

There are built-in functions that return iterators. These built-in Python sequence operations are said to compute
results lazily.

>>> m = map(lambda x: x * x, [3, 4, 5])
>>> next(m)
9
>>> next(m)
16
>>> f = filter(lambda x: x > 3, [3, 4, 5])
>>> next(f)
4
>>> next(f)
5
>>> z = zip([30, 40, 50], [3, 4, 5])
>>> next(z)
(30, 3)
>>> next(z)
(40, 4)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators, Generators 5

Q2: WWPD: Iterators

What would Python display?

>>> s = "cs61a"
>>> s_iter = iter(s)
>>> next(s_iter)

>>> next(s_iter)

>>> list(s_iter)

>>> s = [[1, 2, 3, 4]]
>>> i = iter(s)
>>> j = iter(next(i))
>>> next(j)

>>> s.append(5)
>>> next(i)

>>> next(j)

>>> list(j)

>>> next(i)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Mutability, Iterators, Generators

Q3: Repeated

Implement repeated, which takes in an iterator t and an integer k greater than 1. It returns the first value in t
that appears k times in a row.

Important: Call next on t only the minimum number of times required. Assume that there is an
element of t repeated at least k times in a row.

Hint: If you are receiving a StopIteration exception, your repeated function is calling next too many
times.

def repeated(t, k):
"""Return the first value in iterator t that appears k times in a row,
calling next on t as few times as possible.

>>> s = iter([10, 9, 10, 9, 9, 10, 8, 8, 8, 7])
>>> repeated(s, 2)
9
>>> t = iter([10, 9, 10, 9, 9, 10, 8, 8, 8, 7])
>>> repeated(t, 3)
8
>>> u = iter([3, 2, 2, 2, 1, 2, 1, 4, 4, 5, 5, 5])
>>> repeated(u, 3)
2
>>> repeated(u, 3)
5
>>> v = iter([4, 1, 6, 6, 7, 7, 8, 8, 2, 2, 2, 5])
>>> repeated(v, 3)
2
"""
assert k > 1
"*** YOUR CODE HERE ***"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators, Generators 7

Generators
We can create our own custom iterators by writing a generator function, which returns a special type of iterator
called a generator. Generator functions have yield statements within the body of the function instead of return
statements. Calling a generator function will return a generator object and will not execute the body of the function.

For example, let’s consider the following generator function:

def countdown(n):
print("Beginning countdown!")
while n >= 0:

yield n
n -= 1

print("Blastoff!")

Calling countdown(k) will return a generator object that counts down from k to 0. Since generators are iterators, we
can call iter on the resulting object, which will simply return the same object. Note that the body is not executed
at this point; nothing is printed and no numbers are outputted.

>>> c = countdown(5)
>>> c
<generator object countdown ...>
>>> c is iter(c)
True

So how is the counting done? Again, since generators are iterators, we call next on them to get the next element!
The first time next is called, execution begins at the first line of the function body and continues until the yield
statement is reached. The result of evaluating the expression in the yield statement is returned. The following
interactive session continues from the one above.

>>> next(c)
Beginning countdown!
5

Unlike functions we’ve seen before in this course, generator functions can remember their state. On any consecutive
calls to next, execution picks up from the line after the yield statement that was previously executed. Like the
first call to next, execution will continue until the next yield statement is reached. Note that because of this,
Beginning countdown! doesn’t get printed again.

>>> next(c)
4
>>> next(c)
3

The next 3 calls to next will continue to yield consecutive descending integers until 0. On the following call, a
StopIteration error will be raised because there are no more values to yield (i.e. the end of the function body was

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Mutability, Iterators, Generators

reached before hitting a yield statement).

>>> next(c)
2
>>> next(c)
1
>>> next(c)
0
>>> next(c)
Blastoff!
StopIteration

Separate calls to countdown will create distinct generator objects with their own state. Usually, generators shouldn’t
restart. If you’d like to reset the sequence, create another generator object by calling the generator function again.

>>> c1, c2 = countdown(5), countdown(5)
>>> c1 is c2
False
>>> next(c1)
5
>>> next(c2)
5

Here is a summary of the above:

• A generator function has a yield statement and returns a generator object.
• Calling the iter function on a generator object returns the same object without modifying its current state.
• The body of a generator function is not evaluated until next is called on a resulting generator object. Calling

the next function on a generator object computes and returns the next object in its sequence. If the sequence
is exhausted, StopIteration is raised.

• A generator “remembers” its state for the next next call. Therefore,
– the first next call works like this:

1. Enter the function and run until the line with yield.
2. Return the value in the yield statement, but remember the state of the function for future next calls.

– And subsequent next calls work like this:
1. Re-enter the function, start at the line after the yield statement that was previously executed,

and run until the next yield statement.
2. Return the value in the yield statement, but remember the state of the function for future next calls.

• Calling a generator function returns a brand new generator object (like calling iter on an iterable object).
• A generator should not restart unless it’s defined that way. To start over from the first element in a generator,

just call the generator function again to create a new generator.

Another useful tool for generators is the yield from statement. yield from will yield all values from an iterator or
iterable.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators, Generators 9

>>> def gen_list(lst):
... yield from lst
...
>>> g = gen_list([1, 2, 3, 4])
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
4
>>> next(g)
StopIteration

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Mutability, Iterators, Generators

Q4: Big Fib

This generator function yields all of the Fibonacci numbers.

def gen_fib():
n, add = 0, 1
while True:

yield n
n, add = n + add, n

Try to understand the following expression. (It creates a list of the first 10 Fibonacci numbers.)

(lambda t: [next(t) for _ in range(10)])(gen_fib())

Then, complete the expression below by writing only names and parentheses in the blanks so that it evaluates to the
smallest Fibonacci number that is larger than 2024.

def gen_fib():
n, add = 0, 1
while True:

yield n
n, add = n + add, n

____(______(lambda n: n > 2024, ________))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators, Generators 11

Q5: Something Different

Implement differences, a generator function that takes t, a non-empty iterator over numbers. It yields the
differences between each pair of adjacent values from t. If t iterates over a positive finite number of values n, then
differences should yield n-1 times.

def differences(t):
"""Yield the differences between adjacent values from iterator t.

>>> list(differences(iter([5, 2, -100, 103])))
[-3, -102, 203]
>>> next(differences(iter([39, 100])))
61
"""
"*** YOUR CODE HERE ***"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Mutability, Iterators, Generators

Q6: Primes Generator

Write a function primes_gen that takes a single argument n and yields all prime numbers less than or equal to n in
decreasing order. Assume n >= 1. You may use the is_prime function included below, which we implemented in
Discussion 1. (The recursive implementation of is_prime is shown here.)

First approach this problem using a for loop and using yield.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
def helper(i):

if i > (n ** 0.5): # Could replace with i == n
return True

elif n % i == 0:
return False

return helper(i + 1)
return helper(2)

def primes_gen(n):
"""Generates primes in decreasing order.
>>> pg = primes_gen(7)
>>> list(pg)
[7, 5, 3, 2]
"""
"*** YOUR CODE HERE ***"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Mutability, Iterators, Generators 13

Now that you’ve done it using a for loop and yield, try using yield from! Hint: For your base case, remember
that 1 isn’t a prime.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
def helper(i):

if i > (n ** 0.5): # Could replace with i == n
return True

elif n % i == 0:
return False

return helper(i + 1)
return helper(2)

def primes_gen(n):
"""Generates primes in decreasing order.
>>> pg = primes_gen(7)
>>> list(pg)
[7, 5, 3, 2]
"""
if __________________________________:

return
if __________________________________:

yield __________________________________
yield from __________________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

14 Mutability, Iterators, Generators

Q7: Partitions

Tree-recursive generator functions have a similar structure to regular tree-recursive functions. They are useful for
iterating over all possibilities. Instead of building a list of results and returning it, just yield each result.

You’ll need to identify a recursive decomposition: how to express the answer in terms of recursive calls that are
simpler. Ask yourself what will be yielded by a recursive call, then how to use those results.

Definition. For positive integers n and m, a partition of n using parts up to size m is an addition expression of
positive integers up to m in non-decreasing order that sums to n.

Implement partition_gen, a generator functon that takes positive n and m. It yields the partitions of n using parts
up to size m as strings.

Reminder: For the partitions function we studied in lecture (video), the recursive decomposition was to enumerate
all ways of partitioning n using at least one m and then to enumerate all ways with no m (only m-1 and lower).

Hint: For the base case, yield a partition with just one element, n. Make sure you yield a string.

def partition_gen(n, m):
"""Yield the partitions of n using parts up to size m.

>>> for partition in sorted(partition_gen(6, 4)):
... print(partition)
1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 2
1 + 1 + 1 + 3
1 + 1 + 2 + 2
1 + 1 + 4
1 + 2 + 3
2 + 2 + 2
2 + 4
3 + 3
"""
assert n > 0 and m > 0
if n == m:

yield ____
if n - m > 0:

"*** YOUR CODE HERE ***"

if m > 1:
"*** YOUR CODE HERE ***"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/DvgT4dnSMVM

	Mutability
	Q1: Copying Copies

	Iterators
	Q2: WWPD: Iterators
	Q3: Repeated

	Generators
	Q4: Big Fib
	Q5: Something Different
	Q6: Primes Generator
	Q7: Partitions

