Representation: Repr, Str

Q1: WWPD: Repr-esentation

Note: This is not the typical way `repr` is used, nor is this way of writing `repr` recommended, this problem is mainly just to make sure you understand how `repr` and `str` work.

```python
class A:
    def __init__(self, x):
        self.x = x

    def __repr__(self):
        return self.x

    def __str__(self):
        return self.x * 2

class B:
    def __init__(self):
        print('boo!')
        self.a = []

    def add_a(self, a):
        self.a.append(a)

    def __repr__(self):
        print(len(self.a))
        ret = ''
        for a in self.a:
            ret += str(a)
        return ret
```

Given the above class definitions, what will the following lines output?

```python
>>> A('one')
```

```python
>>> print(A('one'))
```
>>> repr(A('two'))

>>> b = B()

>>> b.add_a(A('a'))
>>> b.add_a(A('b'))
>>> b

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
Linked Lists

There are many different implementations of sequences in Python. Today, we’ll explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value and the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute Link.empty:

```python
if link is Link.empty:
    print('This linked list is empty!')
else:
    print('This linked list is not empty!')
```

You can find an implementation of the Link class below:

```python
class Link:
    """A linked list."""
    empty = ()

    def __init__(self, first, rest=empty):
        assert rest is Link.empty or isinstance(rest, Link)
        self.first = first
        self.rest = rest

    def __repr__(self):
        if self.rest:
            rest_repr = ', ' + repr(self.rest)
        else:
            rest_repr = ''
        return 'Link(' + repr(self.first) + rest_repr + ')'  

    def __str__(self):
        string = '<' 
        while self.rest is not Link.empty:
            string += str(self.first) + ' ' 
            self = self.rest
        return string + str(self.first) + '>'
```
Q2: The Hy-rules of Linked Lists

In this question, we are given the following Linked List:

```python
ganondorf = Link('zelda', Link('link', Link('sheik', Link.empty)))
```

What expression would give us the value 'sheik' from this Linked List?

What is the value of `ganondorf.rest.first`?

What would be the value of `str(ganondorf)`?

What expression would mutate this linked list to `<zelda ganondorf sheik>`?

Q3: Sum Nums

Write a function that takes in a linked list and returns the sum of all its elements. You may assume all elements in `s` are integers. Try to implement this recursively!

```python
def sum_nums(s):
    """
    >>> a = Link(1, Link(6, Link(7)))
    >>> sum_nums(a)
    14
    """
    "*** YOUR CODE HERE ***"
```

You can use more space on the back if you want
Q4: Multiply Links

Write a function that takes in a Python list of linked lists and multiplies them element-wise. It should return a new linked list.

If not all of the Link objects are of equal length, return a linked list whose length is that of the shortest linked list given. You may assume the Link objects are shallow linked lists, and that lst_of_links contains at least one linked list.

def multiply_lns(lst_of_lns):
 """
 >>> a = Link(2, Link(3, Link(5)))
 >>> b = Link(6, Link(4, Link(2)))
 >>> c = Link(4, Link(1, Link(0, Link(2)))))
 >>> p = multiply_lns([a, b, c])
 >>> p.first
 48
 >>> p.rest.first
 12
 >>> p.rest.rest.rest is Link.empty
 True
 """
 # Implementation Note: you might not need all lines in this skeleton code
 """
 for ----------------- = ------------
 """
 if -----------------------------:

 """
Q5: Flip Two

Write a recursive function `flip_two` that takes as input a linked list `s` and mutates `s` so that every pair is flipped.

```python
def flip_two(s):
    """
    >>> one_lnk = Link(1)
    >>> flip_two(one_lnk)
    Link(1)
    >>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))
    >>> flip_two(lnk)
    Link(1, Link(2, Link(3, Link(4, Link(5)))))
    """
    "*** YOUR CODE HERE ***"

    # For an extra challenge, try writing out an iterative approach as well below!
    "*** YOUR CODE HERE ***"

    # You can use more space on the back if you want
```

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
Trees

We define a tree to be a recursive data abstraction that has a label (the value stored in the root of the tree) and branches (a list of trees directly underneath the root). Previously, we implemented the tree abstraction using Python lists. Let’s look at another implementation using objects instead:

```python
class Tree:
    def __init__(self, label, branches=[]):
        for b in branches:
            assert isinstance(b, Tree)
        self.label = label
        self.branches = branches

    def is_leaf(self):
        return not self.branches
```

With this implementation, we can mutate a tree using attribute assignment, which wasn’t possible in the previous implementation using lists. That’s why we sometimes call these objects “mutable trees.”

```python
>>> t = Tree(3, [Tree(4), Tree(5)])
>>> t.label = 5
>>> t.label
5
```
Q6: Make Even

Define a function `make_even` which takes in a tree `t` whose values are integers, and mutates the tree such that all the odd integers are increased by 1 and all the even integers remain the same.

```python
def make_even(t):
    """
    >>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])
    >>> make_even(t)
    2
    >>> t.branches[0].branches[0].label
    4
    """
    "*** YOUR CODE HERE ***"
```

You can use more space on the back if you want
Q7: Add Leaves

Implement `add_d_leaves`, a function that takes in a `Tree` instance `t` and a number `v`.

We define the depth of a node in `t` to be the number of edges from the root to that node. The depth of root is therefore 0.

For each node in the tree, you should add `d` leaves to it, where `d` is the depth of the node. Every added leaf should have a label of `v`. If the node at this depth has existing branches, you should add these leaves to the end of that list of branches.

For example, you should be adding 1 leaf with label `v` to each node at depth 1, 2 leaves to each node at depth 2, and so on.

Here is an example of a tree `t` (shown on the left) and the result after `add_d_leaves` is applied with `v` as 5.

Try drawing out the second doctest to visualize how the function is mutating `t3`.

Hint: Use a helper function to keep track of the depth!
def add_d_leaves(t, v):
 """Add d leaves containing v to each node at every depth d."

>>> t_one_to_four = Tree(1, [Tree(2), Tree(3, [Tree(4)])])
>>> print(t_one_to_four)
1
2
3
4
>>> add_d_leaves(t_one_to_four, 5)
>>> print(t_one_to_four)
1
2
5
3
4
5
5
5

>>> t1 = Tree(1, [Tree(3)])
>>> add_d_leaves(t1, 4)

>>> t1
Tree(1, [Tree(3, [Tree(4)])])

>>> t2 = Tree(2, [Tree(5), Tree(6)])
>>> t3 = Tree(3, [t1, Tree(0), t2])

>>> print(t3)
3
1
3
4
0
2
5
6

>>> add_d_leaves(t3, 10)

>>> print(t3)
3
1
3
4
10
10
10
10
10
10
10
10
0
10
2
5
10

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
Efficiency (Orders of Growth)

When we talk about the efficiency of a function, we are often interested in the following: as the size of the input grows, how does the runtime of the function change? And what do we mean by *runtime*?

Example 1: The `square(1)` function requires one primitive operation: multiplication. `square(100)` also requires one. No matter what input n we pass into `square`, it always takes a *constant* number of operations (1). In other words, this function has a runtime complexity of $\Theta(1)$.

As an illustration, check out the table below:

<table>
<thead>
<tr>
<th>input</th>
<th>function call</th>
<th>return value</th>
<th>operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>square(1)</td>
<td>1*1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>square(2)</td>
<td>2*2</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>square(100)</td>
<td>100*100</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>square(n)</td>
<td>n^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 2: The `factorial(1)` function requires one multiplication, but `factorial(100)` requires 100 multiplications. As we increase the input size of n, the runtime (number of operations) increases *linearly* proportional to the input. In other words, this function has a runtime complexity of $\Theta(n)$.

As an illustration, check out the table below:

<table>
<thead>
<tr>
<th>input</th>
<th>function call</th>
<th>return value</th>
<th>operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>factorial(1)</td>
<td>1*1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>factorial(2)</td>
<td>211</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>factorial(100)</td>
<td>10099...11</td>
<td>100</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>factorial(n)</td>
<td>$n^(n-1)^...11$</td>
<td>n</td>
</tr>
</tbody>
</table>

Example 3: Consider the following function: `def bar(n):` for a in range(n): for b in range(n): print(a,b)

`bar(1)` requires 1 print statements, while `bar(100)` requires $100*100 = 10000$ print statements (each time a increments, we have 100 print statements due to the inner for loop). Thus, the runtime increases *quadratically* proportional to the input. In other words, this function has a runtime complexity of $\Theta(n^2)$.

<table>
<thead>
<tr>
<th>input</th>
<th>function call</th>
<th>operations (prints)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bar(1)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>bar(2)</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>bar(100)</td>
<td>10000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>bar(n)</td>
<td>n^2</td>
</tr>
</tbody>
</table>
Example 4: Consider the following function: `def rec(n): if n == 0: return 1 else: return rec(n - 1) + rec(n - 1)`

`rec(1)` requires one addition, as it returns `rec(0) + rec(0)`, and `rec(0)` hits the base case and requires no further additions. But `rec(4)` requires $2^4 - 1 = 15$ additions. To further understand the intuition, we can take a look at the recursive tree below.

To get `rec(4)`, we need one addition. We have two calls to `rec(3)`, which each require one addition, so this level needs two additions. Then we have four calls to `rec(2)`, so this level requires four additions, and so on down the tree. In total, this adds up to $1 + 2 + 4 + 8 = 15$ additions.

![Recursive Call Tree](image)

As we increase the input size of n, the runtime (number of operations) increases **exponentially** proportional to the input. In other words, this function has a runtime complexity of $\Theta(2^n)$.

As an illustration, check out the table below:

<table>
<thead>
<tr>
<th>input</th>
<th>function call</th>
<th>return value</th>
<th>operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>rec(1)</code></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td><code>rec(2)</code></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td><code>rec(10)</code></td>
<td>1024</td>
<td>1023</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td><code>rec(n)</code></td>
<td>2^n</td>
<td>2^n</td>
</tr>
</tbody>
</table>

Here are some general guidelines for finding the order of growth for the runtime of a function:

- If the function is recursive or iterative, you can subdivide the problem as seen above:
 - Count the number of recursive calls/iterations that will be made in terms of input size n.
Find how much work is done per recursive call or iteration in terms of input size \(n \).

The answer is usually the product of the above two, but be sure to pay attention to control flow!

- If the function calls helper functions that are not constant-time, you need to take the runtime of the helper functions into consideration.

- We can ignore constant factors. For example \(1000000n \) and \(n \) steps are both linear.
- We can also ignore smaller factors. For example if \(h \) calls \(f \) and \(g \), and \(f \) is Quadratic while \(g \) is linear, then \(h \) is Quadratic.
- For the purposes of this class, we take a fairly coarse view of efficiency. All the problems we cover in this course can be grouped as one of the following:
 - Constant: the amount of time does not change based on the input size. Rule: \(n \to 2n \) means \(t \to t \).
 - Logarithmic: the amount of time changes based on the logarithm of the input size. Rule: \(n \to 2n \) means \(t \to t + k \).
 - Linear: the amount of time changes with direct proportion to the size of the input. Rule: \(n \to 2n \) means \(t \to 2t \).
 - Quadratic: the amount of time changes based on the square of the input size. Rule: \(n \to 2n \) means \(t \to 4t \).
 - Exponential: the amount of time changes with a power of the input size. Rule: \(n \to n + 1 \) means \(t \to 2t \).

Q8: WWPD: Orders of Growth

What is the worst case (i.e. when \(n \) is prime) order of growth of `is_prime` in terms of \(n \)?

```python
def is_prime(n):
    for i in range(2, n):
        if n % i == 0:
            return False
    return True
```

Choose one of:

- Constant
- Logarithmic
- Linear
- Quadratic
- Exponential
- None of these

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
What is the order of growth of bar in terms of n?

```python
def bar(n):
    i, sum = 1, 0
    while i <= n:
        sum += biz(n)
        i += 1
    return sum

def biz(n):
    i, sum = 1, 0
    while i <= n:
        sum += i**3
        i += 1
    return sum
```

Choose one of:

- Constant
- Logarithmic
- Linear
- Quadratic
- Exponential
- None of these

What is the order of growth of foo in terms of n, where n is the length of lst? Assume that slicing a list and calling len on a list can both be done in constant time. Write your answer in Θ notation.

```python
def foo(lst, i):
    mid = len(lst) // 2
    if mid == 0:
        return lst
    elif i > 0:
        return foo(lst[mid:], -1)
    else:
        return foo(lst[:mid], 1)
```

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.