1 Efficiency

When we talk about the efficiency of a function, we are often interested in the following: as the size of the input grows, how does the runtime of the function change? And what do we mean by “runtime”?

- **square(1)** requires one primitive operation: \(\ast \) (multiplication). **square(100)** also requires one. No matter what input \(n \) we pass into **square**, it always takes one operation.

<table>
<thead>
<tr>
<th>input</th>
<th>function call</th>
<th>return value</th>
<th>number of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>square(1)</td>
<td>1 \cdot 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>square(2)</td>
<td>2 \cdot 2</td>
<td>1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>100</td>
<td>square(100)</td>
<td>100 \cdot 100</td>
<td>1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(n)</td>
<td>square((n))</td>
<td>(n) \cdot (n)</td>
<td>1</td>
</tr>
</tbody>
</table>

- **factorial(1)** requires one multiplication, but **factorial(100)** requires 100 multiplications. As we increase the input size of \(n \), the runtime (number of operations) increases linearly proportional to the input.

<table>
<thead>
<tr>
<th>input</th>
<th>function call</th>
<th>return value</th>
<th>number of operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>factorial(1)</td>
<td>1 \cdot 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>factorial(2)</td>
<td>2 \cdot 1 \cdot 1</td>
<td>2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>100</td>
<td>factorial(100)</td>
<td>100 \cdot 99 \cdots 1 \cdot 1</td>
<td>100</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(n)</td>
<td>factorial((n))</td>
<td>(n) \cdot ((n - 1)) \cdots 1 \cdot 1</td>
<td>(n)</td>
</tr>
</tbody>
</table>

Here are some general guidelines for finding the order of growth for the runtime of a function:

- If the function is recursive or iterative, you can subdivide the problem as seen above:
 - Count the number of recursive calls/iterations that will be made in terms of input size \(n \).
 - Find how much work is done per recursive call or iteration in terms of input size \(n \).

The answer is usually the product of the above two, but be sure to pay attention to control flow!
Efficiency

- If the function calls helper functions that are not constant-time, you need to take the runtime of the helper functions into consideration.
- We can ignore constant factors. For example, $1000000n$ and n steps are both linear.
- We can also ignore smaller factors. For example, if h calls f and g, and f is quadratic while g is linear, then h is quadratic.
- For the purposes of this class, we take a fairly coarse view of efficiency. All the problems we cover in this course can be grouped as one of the following:
 - Constant: the amount of time does not change based on the input size. Rule: $n \rightarrow 2n$ means $t \rightarrow t$.
 - Logarithmic: the amount of time changes based on the logarithm of the input size. Rule: $n \rightarrow 2n$ means $t \rightarrow t + k$.
 - Linear: the amount of time changes based on the logarithm of the input size. Rule: $n \rightarrow 2n$ means $t \rightarrow 2t$.
 - Quadratic: the amount of time changes based on the logarithm of the input size. Rule: $n \rightarrow 2n$ means $t \rightarrow 4t$.
 - Exponential: the amount of time changes based on the logarithm of the input size. Rule: $n \rightarrow n + 1$ means $t \rightarrow 2t$.

Questions

1.1 What is the efficiency of `bonk`?

```python
def bonk(n):
    total = 0
    while n >= 2:
        total += n
        n = n / 2
    return total
```

Logarithmic, because our while loop iterates at most $\log(n)$ times, due to n being halved in every iteration. Another way of looking at this if you duplicate the input, we only add a single iteration to the time, which also indicates logarithmic. Video walkthrough

1.2 Previously, we looked at the `is_prime` function. Here's the code for it:

```python
def is_prime(n):
    if n == 1:
        return False
    k = 2
    while k < n:
        if n % k == 0:
            return False
        k += 1
    return True
```

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
What is the efficiency of \texttt{is_prime}?

Linear

1.3 What is the efficiency of \texttt{mod}_7?

\begin{verbatim}
 def mod_7(n):
 if n % 7 == 0:
 return 0
 else:
 return 1 + mod_7(n - 1)
\end{verbatim}

Constant, since at worst it will require 6 recursive calls to reach the base case.

\textit{Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.}