1 Introduction

In the next part of the course, we will be working with the **Scheme** programming language. In addition to learning how to write Scheme programs, we will eventually write a Scheme interpreter in Project 4!

Scheme is a dialect of the **Lisp** programming language, a language dating back to 1958. The popularity of Scheme within the programming language community stems from its simplicity – in fact, previous versions of CS 61A were taught in the Scheme language.

2 Primitives and Defining Variables

Scheme has a set of *atomic* primitive expressions. Atomic means that these expressions cannot be divided up.

```scheme
scm> 123
123
scm> #t
True
scm> #f
False
```

Unlike in Python, the only primitive in Scheme that is a false value is `#f` and its equivalents, `false` and `False`. **This means that 0 is not false.**

The `define` special form defines variables and procedures by binding a value to a variable, just like the assignment statement in Python. When a variable is defined, the `define` special form returns a symbol of its name. A procedure is what we call a function in Scheme!

The syntax to define a variable and procedure are:

- `(define <variable name> <value>)`
- `(define (<function name> <parameters>) <function body>)`

Special forms are types of expressions with unique evaluation rules that can do a variety of things. Often times, special forms are analogous to statements in Python, such as assignment statements, `if` statements, and `def` statements. However, all special forms in Scheme evaluate to a value. We’ll learn more about special forms later in the discussion.
3 Call Expressions

Call expressions apply a procedure to some arguments.

\[
\langle \text{operator} \rangle \ \langle \text{operand1} \rangle \ \langle \text{operand2} \rangle \ \ldots
\]

Call expressions in Scheme work exactly like they do in Python. To evaluate them:

1. Evaluate the operator to get a procedure.
2. Evaluate each of the operands from left to right.
3. Apply the value of the operator to the evaluated operands.

For example, consider the call expression \((+ \ 1 \ 2)\). First, we evaluate the symbol \(+\) to get the built-in addition procedure. Then we evaluate the two operands \(1\) and \(2\) to get their corresponding atomic values. Finally, we apply the addition procedure to the values \(1\) and \(2\) to get the return value \(3\).

Operators may be symbols, such as \(+\) and \(*\), or more complex expressions, as long as they evaluate to procedure values.

\begin{verbatim}
scm> (+ 1 2) ; 1 + 2
3
\end{verbatim}

Some important built-in functions you’ll want to know are:

- \(+\), \(-\), \(*\), \(/\)
- \(=\), \(>\), \(>=\), \(<\), \(<=\)
- \(\text{quotient}\), \(\text{modulo}\), \(\text{even}\), \(\text{odd}\)

Questions

3.1 What would Scheme display?

\begin{verbatim}
scm> (define a (+ 1 2))

scm> a

scm> (define b (+ (* 3 3) (* 4 4)))

scm> (+ a b)

scm> (= (modulo 10 3) (quotient 5 3))

scm> (even? (+ (- (* 5 4) 3) 2))
\end{verbatim}
4 Special Forms

Special form expressions contain a **special form** as the operator. Special form expressions **do not** follow the same rules of evaluation as call expressions. Each special form has its own rules of evaluation – that’s what makes them special!

If Expression

An **if** expression looks like this:

```
(if <predicate> <if-true> [if-false])
```

<predicate> and *<if-true>* are required expressions and *[if-false]* is optional.

The rules for evaluation are as follows:

1. Evaluate *<predicate>*.
2. If *<predicate>* evaluates to a truth-y value, evaluate *<if-true>* and return its value. Otherwise, evaluate *[if-false]* if provided and return its value.

This is a special form because not all operands will be evaluated! Only one of the second and third operands is evaluated, depending on the value of the first operand.

Remember that only **#f** is a false-y value in Scheme; everything else is truth-y.

```
scm> (if (< 4 5) 1 2)  
1
scm> (if #f (/ 1 0))  
42
```

Boolean Operators

Like Python, Scheme also has the boolean operators **and**, **or**, and **not.** **and** and **or** are special forms because they are short-circuiting operators.

- **and** takes in any amount of operands and evaluates these operands from left to right until one evaluates to a false-y value. It returns that first false-y value. If there are no false-y values, it returns the value of the last expression (or **#t** if there are no operands)
- **or** also evaluates any number of operands from left to right until one evaluates to a truth-y value. It returns that first truth-y value. If there are no truth-y values, it returns the value of the last expression (or **#f** if there are no operands)
- **not** takes in a single operand, evaluates it, and returns its opposite truthiness value. Note that **not** is a regular procedure and not a special form.

```
scm> (and 25 32)  
32
scm> (or 1 (/ 1 0))  ; Short-circuits  
1
scm> (not (odd? 10))  
#t
```
4 Scheme

Questions

4.1 What would Scheme display?

```
scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 4 3) + -) 4 100)

scm> (if 0 1 2)
```

Lambdas and Defining Functions

All Scheme procedures are lambda procedures. One way to create a procedure is to use the `lambda` special form.

```
(lambda (<param1> <param2> ...) <body>)
```

This expression creates a lambda function with the given parameters and body, but does not evaluate the body. Just like in Python, the body is not evaluated until the function is called and applied to some argument values. The fact that neither operand is evaluated is what makes `lambda` a special form.

Another similarity to Python is that lambda expressions do not assign the returned function to any name. We can assign the value of an expression to a name with a `define` special form.

For example, `(define square (lambda (x) (* x x)))` creates a lambda procedure that squares its argument and assigns that procedure to the name `square`.

The second version of the `define` special form is a shorthand for this function definition:

```
(define (<name> <param1> <param2> ...) <body>)
```

This expression creates a function with the given parameters and body and binds it to the given name.

```
scm> (define square (lambda (x) (* x x))) ; Bind the lambda function to the name square
sce> (define (square x) (* x x)) ; Equivalent to the line above
sce> square
(lamba (x) (* x x))
```
Questions

4.1 Write a function that returns the factorial of a number.

\(\text{(define \text{factorial} \text{x})} \)

4.2 Write a function that returns the \(n^{th} \) Fibonacci number.

\(\text{(define \text{fib} \text{n})} \)

\[
\begin{align*}
\text{scm> (fib 0)} & \quad 0 \\
\text{scm> (fib 1)} & \quad 1 \\
\text{scm> (fib 10)} & \quad 55
\end{align*}
\]

5 Pairs and Lists

All lists in Scheme are linked lists. Scheme lists are composed of two element pairs. We define a list as being either

- the empty list, nil
- a pair whose second element is a list

As in Python, linked lists are recursive data structures. The base case is the empty list.

We use the following procedures to construct and select from lists:

- \(\text{(cons first rest)} \) constructs a list with the given first element and rest of the list. For now, if \text{rest} is not a pair or \text{nil} it will error.
- \(\text{(car lst)} \) gets the first item of the list
- \(\text{(cdr lst)} \) gets the rest of the list

\[
\begin{align*}
\text{scm> nil} & \quad () \\
\text{scm> (define lst (cons 1 (cons 2 (cons 3 nil))))} & \quad \text{lst} \\
\text{scm> lst} & \quad (1 \ 2 \ 3)
\end{align*}
\]
The rule for displaying lists is very similar to that for the Link class from earlier in the class’s `str` method. It prints out the elements in the linked list as if the list has no nested structure.

Two other common ways of creating lists is using the built-in `list` procedure or the `quote` special form:

- The `list` procedure takes in an arbitrary amount of arguments. Because it is a procedure, all operands are evaluated when `list` is called. A list is constructed with the values of these operands and is returned.

- The `quote` special form takes in a single operand. It returns this operand exactly as is, without evaluating it. Note that this special form can be used to return any value, not just a list.

```
scm> (define x 2)
scm> (list 1 x 3)
(1 2 3)
scm> (quote (1 x 3))
(1 x 3)
scm> '(1 x 3)  ; Equivalent to the previous quote expression
(1 x 3)
```

`=`, `eq?`, `equal?`

- `=` can only be used for comparing numbers.
- `eq?` behaves like `==` in Python for comparing two non-pairs (numbers, booleans, etc.). Otherwise, `eq?` behaves like `is` in Python.
- `equal?` compares pairs by determining if their `cars` are `equal?` and their `cdrs` are `equal?`(that is, they have the same contents). Otherwise, `equal?` behaves like `eq?`.

```
scm> (define a '(1 2 3))
a
scm> (= a a)
Error
```
scm> (equal? a '(1 2 3))
#t
scm> (eq? a '(1 2 3))
#f
scm> (define b a)
b
scm> (eq? a b)
#t

Questions

5.1 Write a function which takes two lists and concatenates them.

Notice that simply calling (cons a b) would not work because it will create a deep list. Do not call the builtin procedure append, which does the same thing as my-append.

(define (my-append a b)
)
scm> (my-append '(1 2 3) '(2 3 4))
(1 2 3 2 3 4)

5.2 Write a function that takes an element x and a non-negative integer n, and returns a list with x repeated n times.

(define (replicate x n)

scm> (replicate 5 3)
(5 5 5)

5.3 A run-length encoding is a method of compressing a sequence of letters. The list (a a a b a a a a) can be compressed to ((a 3) (b 1) (a 4)), where the compressed version of the sequence keeps track of how many letters appear consecutively.
Write a function that takes a compressed sequence and expands it into the original sequence. *Hint:* You may want to use `my-append` and `replicate`.

\[
\text{(define (uncompress s)}
\]

\[
;\text{scm> (uncompress '((a 1) (b 2) (c 3)))}
(a b b c c c)
\]
6 Extra Questions

6.1 Write a function that takes a procedure and applies it to every element in a given list.

\[
\text{(define (map \text{fn} \text{lst})}
\]

\[
\text{scm> (map \text{lambda} (x) (* x x)) '(1 2 3)}
\]

\[
(1 4 9)
\]

6.2 Fill in the following to complete an abstract tree data type:

\[
\text{(define (make-tree label branches) (cons label branches))}
\]

\[
\text{(define (label tree)}
\]

\[
\text{(define (branches tree)}
\]

6.3 Using the abstract data type above, write a function that sums up the entries of a tree, assuming that the entries are all numbers.

Hint: you may want to use the \text{map} function you defined above, and also write a helper function for summing up the entries of a list.

\[
\text{(define (tree-sum tree)}
\]