1 Lists, Recursion, Tree Recursion

Questions

1.1 What would Python display?

```python
lst = [1, 2, 3, 4, 5]
lst[1:3]
lst[0:len(lst)]
lst[-4:]
lst[3:]
lst[1:4:2]
lst[:4:2]
lst[1::2]
lst[::2]
lst[::1]
lst + 100
lst3 = [[[1], [2], [3]]
lst + lst3
```
1.2 Draw the environment diagram that results from running the code below

```python
def reverse(lst):
    if len(lst) <= 1:
        return lst
    return reverse(lst[1:]) + [lst[0]]
```

```python
lst = [1, [2, 3], 4]
rev = reverse(lst)
```

1.3 Implement a function `map_mut` that takes a list as an argument and maps a function `f` onto each element of the list. You should mutate the original lists, without creating any new lists. Do NOT return anything.

```python
def map_mut(f, L):
    >>> L = [1, 2, 3, 4]
    >>> map_mut(lambda x: x**2, L)
    >>> L
    [1, 4, 9, 16]
```

1.4 Check your understanding

1. When copying the list, when are you copying a pointer of the list vs. copying the actual value inside of a list?

2. How would you make a deep copy of a list?
1.5 What are three things you find in every recursive function?

1.6 When you write a Recursive function, you seem to call it before it has been fully defined. Why doesn’t this break the Python interpreter?

1.7 Below is a Python function that computes the nth Fibonacci number. Identify the three things it contains as a recursive function (from 1.1).

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

1.8 With the definition of the Fibonacci function above, draw out a diagram of the recursive calls made when `fib(4)` is called.
1.9 What does the following function cascade2 do? What is its domain and range?

```python
def cascade2(n):
    print(n)
    if n >= 10:
        cascade2(n//10)
    print(n)
```

1.10 Consider an insect in an $M$ by $N$ grid. The insect starts at the bottom left corner, $(0, 0)$, and wants to end up at the top right corner $(M-1, N-1)$. The insect is only capable of moving right or up. Write a function `paths` that takes a grid length and width and returns the number of different paths the insect can take from the start to the goal. (There is a closed-form solution to this problem, but try to answer it procedurally using recursion.)

```python
def paths(m, n):
    ""
    >>> paths(2, 2)
    2
    >>> paths(117, 1)
    1
    ""
```
1.11 Write a procedure \texttt{merge(s1, s2)} which takes two sorted (smallest value first) lists and returns a single list with all of the elements of the two lists, in ascending order. Use recursion.

\textit{Hint:} If you can figure out which list has the smallest element out of both, then we know that the resulting merged list will have that smallest element, followed by the merge of the two lists with the smallest item removed. Don’t forget to handle the case where one list is empty!

\begin{verbatim}
def merge(s1, s2):
    """ Merges two sorted lists
    >>> merge([1, 3], [2, 4])
    [1, 2, 3, 4]
    >>> merge([1, 2], [])
    [1, 2]
    """
\end{verbatim}
Mario needs to jump over a sequence of Piranha plants, represented as a string of dashes (no plant) and P's (plant!). He only moves forward, and he can either step (move forward one place) or jump (move forward two places) from each position. How many different ways can Mario traverse a level without stepping or jumping into a Piranha plant? Assume that every level begins with a dash (where Mario starts) and ends with a dash (where Mario must end up):

**Hint:** You can get the ith character in a string s by using s[i]. For example,

```python
>>> s = 'abcdefg'
>>> s[0]
'a'
>>> s[2]
'c'
```

You can find the total number of characters in a string with the built-in `len` function:

```python
>>> s = 'abcdefg'
>>> len(s)
7
>>> len('')
0
```

```python
def mario_number(level):
    """Return the number of ways that Mario can perform a sequence of steps or jumps to reach the end of the level without ever landing in a Piranha plant. Assume that every level begins and ends with a dash.
    """
    # jump, jump
    >>> mario_number('--P--P--')
    1
    # jump, jump, step
    >>> mario_number('--P--P--')
    1
    # step, jump, jump
    >>> mario_number('---P--P--')
    1
    # step, step, jump or jump, jump, jump
    >>> mario_number('----P--P--')
    2
    # Mario cannot jump two plants
    >>> mario_number('---PPP--P--')
    0
    # step, jump ; jump, step ; step, step, step
    >>> mario_number('----P----P----P----')
    9
    >>> mario_number('-----P-----P-----P-----P-----P-----P-----P-----')
    180
```

*Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.*