Object-oriented programming (OOP) is a programming paradigm that allows us to treat data as objects, like we do in real life.

For example, consider the class `Student`. Each of you as individuals is an instance of this class.

Details that all CS 61A students have, such as `name`, are called instance variables. Every student has these variables, but their values differ from student to student. A variable that is shared among all instances of `Student` is known as a class variable. For example, the `max_slip_days` attribute is a class variable as it is a property of all students.

All students are able to do homework, attend lecture, and go to office hours. When functions belong to a specific object, they are called methods. In this case, these actions would be methods of `Student` objects.

Here is a recap of what we discussed above:

- **class**: a template for creating objects
- **instance**: a single object created from a class
- **instance variable**: a data attribute of an object, specific to an instance
- **class variable**: a data attribute of an object, shared by all instances of a class
- **method**: a bound function that may be called on all instances of a class

Instance variables, class variables, and methods are all considered attributes of an object.
Q1: WWPD: Student OOP

Below we have defined the classes **Professor** and **Student**, implementing some of what was described above. Remember that Python passes the `self` argument implicitly to methods when calling the method directly on an object.

```python
class Student:
    max_slip_days = 3  # this is a class variable

    def __init__(self, name, staff):
        self.name = name  # this is an instance variable
        self.understanding = 0
        staff.add_student(self)
        print("Added", self.name)

    def visit_office_hours(self, staff):
        staff.assist(self)
        print("Thanks, " + staff.name)

class Professor:

    def __init__(self, name):
        self.name = name
        self.students = {}

    def add_student(self, student):
        self.students[student.name] = student

    def assist(self, student):
        student.understanding += 1

    def grant_more_slip_days(self, student, days):
        student.max_slip_days = days
```

What will the following lines output?

```
>>> callahan = Professor("Callahan")
>>> elle = Student("Elle", callahan)

Added Elle

>>> elle.visit_office_hours(callahan)

Thanks, Callahan
```
>>> elle.visit_office_hours(Professor("Paulette"))

Thanks, Paulette

>>> elle.understanding

2

>>> [name for name in callahan.students]

['Elle']

>>> x = Student("Vivian", Professor("Stromwell")).name

Added Vivian

>>> x

'Vivian'

>>> [name for name in callahan.students]

['Elle']

>>> elle.max_slip_days

3

>>> callahan.grant_more_slip_days(elle, 7)

>>> elle.max_slip_days

7

>>> Student.max_slip_days

3

Q2: Keyboard

We’d like to create a `Keyboard` class that takes in an arbitrary number of `Buttons` and stores these `Buttons` in a dictionary. The keys in the dictionary will be ints that represent the position on the `Keyboard`, and the values will be the respective
Button. Fill out the methods in the Keyboard class according to each description, using the doctests as a reference for the behavior of a Keyboard.
class Button:
 def __init__(self, pos, key):
 self.pos = pos
 self.key = key
 self.times_pressed = 0

class Keyboard:
 """A Keyboard takes in an arbitrary amount of buttons, and has a
dictionary of positions as keys, and values as Buttons.
 >>> b1 = Button(0, "H")
 >>> b2 = Button(1, "I")
 >>> k = Keyboard(b1, b2)
 >>> k.buttons[0].key
 'H'
 >>> k.press(1)
 'I'
 >>> k.press(2) # No button at this position
 ' ';
 >>> k.typing([0, 1])
 'HI'
 >>> k.typing([1, 0])
 'IH'
 >>> b1.times_pressed
 2
 >>> b2.times_pressed
 3
 """
 def __init__(self, *args):
 self.buttons = {}
 for button in args:
 self.buttons[button.pos] = button
 def press(self, info):
 """Takes in a position of the button pressed, and
returns that button's output.""
 if info in self.buttons.keys():
 b = self.buttons[info]
 b.times_pressed += 1
 return b.key
 return ''
 def typing(self, typing_input):
 """Takes in a list of positions of buttons pressed, and
returns the total output.""
 accumulate = ''
 for pos in typing_input:
 accumulate += self.press(pos)
 return accumulate

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
Inheritance

To avoid redefining attributes and methods for similar classes, we can write a single base class from which the similar classes inherit. For example, we can write a class called Pet and define Dog as a subclass of Pet:

```python
class Pet:
    def __init__(self, name, owner):
        self.is_alive = True  # It's alive!!!
        self.name = name
        self.owner = owner

    def eat(self, thing):
        print(self.name + " ate a " + str(thing) + "!")

    def talk(self):
        print(self.name)

class Dog(Pet):
    def talk(self):
        super().talk()
        print('This Dog says woof!')
```

Inheritance represents a hierarchical relationship between two or more classes where one class is a more specific version of the other: a dog is a pet (We use is a to describe this sort of relationship in OOP languages, and not to refer to the Python is operator).

Since Dog inherits from Pet, the Dog class will also inherit the Pet class’s methods, so we don’t have to redefine __init__ or eat. We do want each Dog to talk in a Dog-specific way, so we can override the talk method.

We can use super() to refer to the superclass of self, and access any superclass methods as if we were an instance of the superclass. For example, super().talk() in the Dog class will call the talk() method from the Pet class, but passing the Dog instance as the self.

This is a little bit of a simplification, and if you’re interested you can read more in the Python documentation on super.
Q3: Cat

Below is a skeleton for the `Cat` class, which inherits from the `Pet` class. To complete the implementation, override the `__init__` and `talk` methods and add a new `lose_life` method.

Hint: You can call the `__init__` method of `Pet` (the superclass of `Cat`) to set a cat’s `name` and `owner`.

```python
class Cat(Pet):
    def __init__(self, name, owner, lives=9):
        super().__init__(name, owner)
        self.lives = lives

    def talk(self):
        """Print out a cat's greeting."
        print(self.name + ' says meow!')

    def lose_life(self):
        """Decrement a cat's life by 1. When lives reaches zero,
        is_alive becomes False. If this is called after lives has
        reached zero, print 'This cat has no more lives to lose.'""

        if self.lives > 0:
            self.lives -= 1
            if self.lives == 0:
                self.is_alive = False
        else:
            print("This cat has no more lives to lose.
        ""
```
Q4: NoisyCat

More cats! Fill in this implementation of a class called NoisyCat, which is just like a normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat! If you’d like to test your code, feel free to copy over your solution to the Cat class above.

```python
class NoisyCat(Cat):  # Fill me in!
    """A Cat that repeats things twice."""
    def __init__(self, name, owner, lives=9):
        # Is this method necessary? Why or why not?
        super().__init__(name, owner, lives)
        # No, this method is not necessary because NoisyCat already
        inherits Cat's __init__ method

    def talk(self):
        """Talks twice as much as a regular cat."
        >>> NoisyCat('Magic', 'James').talk()
        Magic says meow!
        Magic says meow!
        """
        super().talk()
        super().talk()
```

Class Methods

Now we’ll try out another feature of Python classes: class methods. A method can be turned into a class method by adding the `classmethod` decorator. Then, instead of receiving the instance as the first argument (`self`), the method will receive the class itself (`cls`).

Class methods are commonly used to create “factory methods”: methods whose job is to construct and return a new instance of the class.

For example, we can add a `robo_factory` class method to our Dog class that makes robo-dogs:

```python
class Dog(Pet):
    # With the previously defined methods not written out
    @classmethod
    def robo_factory(cls, owner):
        return cls("RoboDog", owner)
```

Then a call to `Dog.robo_factory('Sally')` would return a new Dog instance with the name “RoboDog” and owner “Sally”.

\[Note: \text{This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.}\]
Q5: Cat Adoption

Now you can implement the `adopt_random_cat` method below, which should construct a cat with a random name and lives. To generate random values, you can use functions like `random.choice` and `random.randint` from the `random` module.

```python
import random as random

class Cat(Pet):
    def __init__(self, name, owner, lives=9):
        super().__init__(name, owner)
        self.lives = lives

    # Insert other previously defined methods here

@classmethod
def adopt_random_cat(cls, owner):
    """
    Returns a new instance of a Cat with the given owner, a randomly chosen name and a random number of lives.
    >>> randcat = Cat.adopt_random_cat("Ifeoma")
    >>> isinstance(randcat, Cat)
    True
    >>> randcat.owner
    'Ifeoma'
    """
    cat_name = random.choice(['felix', 'bugs', 'grumpy'])
    num_lives = random.randint(1, 20)
    return cls(cat_name, owner, num_lives)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
**Representation: Repr, Str**

There are two main ways to produce the “string” of an object in Python: `str()` and `repr()`. While the two are similar, they are used for different purposes.

`str()` is used to describe the object to the end user in a “Human-readable” form, while `repr()` can be thought of as a “Computer-readable” form mainly used for debugging and development.

When we define a class in Python, `__str__` and `__repr__` are both built-in methods for the class.

We can call those methods using the global built-in functions `str(obj)` or `repr(obj)` instead of dot notation, `obj.__repr__()` or `obj.__str__()`.

In addition, the `print()` function calls the `__str__` method of the object, while simply calling the object in interactive mode calls the `__repr__` method.

Here’s an example:

```python
class Rational:
 def __init__(self, numerator, denominator):
 self.numerator = numerator
 self.denominator = denominator

 def __str__(self):
 return f'{self.numerator}/{self.denominator}'

 def __repr__(self):
 return f'Rational({self.numerator},{self.denominator})'

>>> a = Rational(1, 2)
>>> str(a)
'1/2'
>>> repr(a)
'Rational(1,2)'
>>> print(a)
1/2
>>> a
Rational(1,2)
```

*Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.*
Q6: WWPD: Representation

```python
class A:
 def __init__(self, x):
 self.x = x
 def __repr__(self):
 return self.x
 def __str__(self):
 return self.x * 2

class B:
 def __init__(self):
 print('boo!')
 self.a = []
 def add_a(self, a):
 self.a.append(a)
 def __repr__(self):
 print(len(self.a))
 ret = ''
 for a in self.a:
 ret += str(a)
 return ret
```

Given the above class definitions, what will the following lines output?

```python
>>> A('one')
one

>>> print(A('one'))
oneone

>>> repr(A('two'))
'two'

>>> b = B()
```

*Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.*
>>> b.add_a(A('a'))

>>> b.add_a(A('b'))

>>> b

2

aabb