CS 61A Interpreters
Fall 2023 Discussion 10: April 10, 2024

Reminder: We’ll still use Pensieve, but we’ve removed the voice/video chat from Pensieve. Use Discord for voice
chat with the course staff. It’s more reliable and includes screensharing. Write to @discuss in the #discuss-queue

channel on Discord at any time, and a member of the course staff will join your group’s voice channel.
Pick someone in your group to join Discord. It’s fine if multiple people join, but one is enough.
Now switch to Pensieve:

o Everyone: Go to discuss.pensieve.co and log in with your @berkeley.edu email, then enter your group number.

(Your group number is the number of your Discord channel.)

Once you're on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).

If for some reason Penseive doesn’t work, return to this page and continue with the discussion.
Post in the #help channel on Discord if you have trouble.

Pro tip: Any of you can type a question into your group’s Discord channel’s text chat with the @discuss tag, and

a member of the course staff will respond.

Getting Started

If you have only 1 or 2 people in your group, you can join the other group in the room with you.

Everybody say your name, and then figure out who is planning to travel outside of the Bay Area the soonest.

Representing Lists
A Scheme call expression is a Scheme list that is represented using a Pair instance in Python.

For example, the call expression (+ (* 3 4) 5) is represented as:

Pair('+', Pair(Pair('x', Pair(3, Pair(4, nil))), Pair(5, nil)))

4! -— . ——| h
"x' —| 3 ——|
(+ (*34)5)

The Pair class and nil object are defined in pair.py of the Scheme project.

https://cs61a.org/articles/discord
http://discuss.pensieve.co
https://cs61a.org/articles/discord/
https://support.discord.com/hc/en-us/articles/4412085582359-Text-Channels-Text-Chat-In-Voice-Channels#h_01FMJT412WBX1MR4HDYNR8E95X
http://cs61a.org/proj/scheme/pair.py
http://cs61a.org/proj/scheme

2 Interpreters

class Pair:
"A Scheme list is a Pair in which rest is a Pair or nil."
def __init__(self, first, rest):
self.first = first

self.rest = rest

. # There are also __str__, __repr__, and map methods, omitted here.

Q1: Representing Expressions

Write the Scheme expression in Scheme syntax represented by each Pair below. Try drawing the linked list diagram
too. The first one is done for you.

Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil)))

Answer: (+ (* 3 4) 5)

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

! l——h| 1 —

.

|] 2| | 3

(+1 (x23))

>>> Pair('and', Pair(Pair('<', Pair(1, Pair(0, nil))), Pair(Pair('/', Pair(1, Pair(0, nil
))), nil)))

"and® —_— . *

—
—

——| 1 — = [10 D——h-| 1 —— @

(and (<1 0) (/1 0))

Discussion Time: What does (and (< 1 0) (/ 1 0)) evaluate to? Discuss among your group until you all agree,
then post your answer in your group’s Discord channel’s text chat.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://support.discord.com/hc/en-us/articles/4412085582359-Text-Channels-Text-Chat-In-Voice-Channels#h_01FMJT412WBX1MR4HDYNR8E95X

Interpreters 3

Evaluation

To evaluate the expression (+ (* 3 4) 5) using the Project 4 interpreter, scheme_eval is called on the following

expressions (in this order):

1. (+ (x 3 4) 5)
+

. (x 3 4)
b3

N oo e W

3
.4
5
Discussion time: Describe to each other why * is evaluated and what it evaluates to.

The * is evaluated because it is the operator sub-expression of (* 3 4), which is an operand sub-expression of
(+ (x 3 4) 5).

By default, * evaluates to a procedure that multiplies its arguments together. But * could be redefined at any time,

and so the symbol * must be evaluated each time it is used in order to look up its current value.

scm> (* 2 3) ; Now it multiplies
6

scm> (define * +)

*

scm> (x 2 3) ; Now it adds

5

An if expression is also a Scheme list represented using a Pair instance.
For example, (if (< x 0) (- x) x) is represented as:

Pair('if', Pair(Pair('<', Pair('x', Pair(0, nil))), Pair(Pair('-', Pair('x', nil)), Pair('x',

nil))))

'if! — * . —— | Py

—
e]

To evaluate this expression in an environment in which x is bound to 2 (and < and - have their default values),
scheme_eval is called on the following expressions (in this order): 1. (if (< x 0) (- x) x) 1. (< x 0) 1. < 1. x
1.01. x

Presentation time: Come up with a short explanation of why neither if nor - are evaluated even though they
both appear in (if (< x 0) (- x) x). Once your group agrees on an answer (or wants help), send a message to
the #discuss-queue channel with the @discuss tag, your discussion group number, and the message “If you please!”

and a member of the course staff will join your voice channel to hear your explanation and give feedback.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Interpreters

The symbol if is not evaluated because it is the start of a special form, not part of a call expression. The symbols

that introduce special forms (and, if, lambda, etc.) are never evaluated.

The symbol - is not evaluated, nor is the whole sub-expression (- x) that it appears in, because (< x 0) evaluates

to #f. If you’re still not certain why some parts are evaluated and some aren’t, ask the course staff.

Q2: Evaluation

Which of the following are evaluated when scheme_eval is called on (if (< x 0) (- x) (if (= x -2) 100 y))
in an environment in which x is bound to -2? (Assume <, -, and = have their default values.)

o if

o <

o (
)
With x bound to -2, (< x 0) evaluates to #t, and so (- x) will be evaluated, but (if (= x 1) 100 x) will not.
The operator and operands of a call expression are evaluated for every call expression that is evaluated. (< x 0)
and (- x) are both call expressions.

List your group’s answers in your group’s Discord channel’s text chat. For example, write if < 0) if you think
those are the four that get evaluated. A member of the course staff will review your answer and give feedback.
Q3: Print Evaluated Expressions

Define print_evals, which takes a Scheme expression expr that contains only numbers, +, *, and parentheses. It
prints all of the expressions that are evaluated during the evaluation of expr. They are printed in the order that
they are passed to scheme_eval.

Note: Calling print on a Pair instance will print the Scheme expression it represents.

>>> print(Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil))))
(+ (x 34) 5)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://support.discord.com/hc/en-us/articles/4412085582359-Text-Channels-Text-Chat-In-Voice-Channels#h_01FMJT412WBX1MR4HDYNR8E95X

Interpreters 5

def print_evals(expr):

"""Print the expressions that are evaluated while evaluating expr.

expr: a Scheme expression containing only (,), +, *, and numbers.

>>> nested_expr = Pair('+', Pair(Pair('*x', Pair(3, Pair(4, nil))), Pair(5, nil)))
>>> print_evals(nested_expr)

(+ (x 3 4) 5)

+

(x 3 4)

*

3

4

5

>>> print_evals(Pair('*', Pair(6, Pair(7, Pair(nested_expr, Pair(8, nil))))))
(x 67 (+ (x 34) 5) 8)

*

6

7

(+ (x 3 4) 5)

+

(x 3 4)

0 O b W o*

if not isinstance(expr, Pair):
print (expr)
else:
print (expr)
while expr is not nil:
print_evals(expr.first)

expr = expr.rest

If expr is not a pair, then it is a number or '+' or '*'. In all of these cases, the expr should be printed to indicate
that it would be evaluated.

If expr is a pair, then it is a call expression. Print it. Then, the operator and operands are evaluated. These are
the elements in the list expr. So, iterate through expr (using either a while statement or expr.map(...)) and call
print_evals on each element.

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Important: Please help put the furniture in the room back where you found it before you leave. Thanks!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://docs.google.com/forms/d/e/1FAIpQLSeqlK8l6WkScGr-RHR-kM4p5bnR9cllYrG95fDqPJspSlll7A/viewform

	Getting Started
	Representing Lists
	Q1: Representing Expressions

	Evaluation
	Q2: Evaluation
	Q3: Print Evaluated Expressions

	Document the Occasion

