INSTRUCTIONS

- You have 2 hours to complete the exam.
- The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5" × 11" crib sheet of your own creation and the official CS 61A midterm 1 study guide.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.

<table>
<thead>
<tr>
<th>Last name</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name</td>
</tr>
<tr>
<td>Student ID number</td>
</tr>
<tr>
<td>CalCentral email (<a href="mailto:_@berkeley.edu">_@berkeley.edu</a>)</td>
</tr>
<tr>
<td>TA</td>
</tr>
<tr>
<td>Name of the person to your left</td>
</tr>
<tr>
<td>Name of the person to your right</td>
</tr>
</tbody>
</table>

All the work on this exam is my own. (please sign)
1. (10 points) I Wonder What Python Would Display

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but include all output displayed before the error. To display a function value, write “Function”. The first two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have first started python3 and executed the statements on the left.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Interactive Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>pow(2, 3)</td>
<td>8</td>
</tr>
<tr>
<td>print(4, 5) + 1</td>
<td>4 5 Error</td>
</tr>
<tr>
<td>print(aaron, burr)</td>
<td></td>
</tr>
<tr>
<td>alex(3)</td>
<td></td>
</tr>
<tr>
<td>el(3, el)</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>K(3)</td>
<td></td>
</tr>
<tr>
<td>K(3)(2)</td>
<td></td>
</tr>
<tr>
<td>pr(True) and pr(0) and pr(1)</td>
<td></td>
</tr>
</tbody>
</table>

aaron, burr = 2, 5
aaron, burr = 4, aaron + 1
hamil = 10
def alex(hamil):
    def g(w):
        hamil = 2 * w
        print(hamil, w)
        w = hamil
        return hamil
    w = 5
    alex = g(w + 1)
    print(w, alex, hamil)
def el(i, za):
    def angelica():
        return i + 1
    if i > 10:
        return za()
    elif i > 4:
        print(angelica())
        return el(i * i, za)
    else:
        return el(i * i, angelica)
K = lambda x: lambda y: x
def pr(x):
    print(x)
    return x
2. (8 points) Environmental Influences

Fill in the environment diagram that results from executing the code below until the entire program is finished, an error occurs, or all frames are filled. *You may not need to use all of the spaces, frames, or function values.*

A complete answer will:

- Add all missing names and parent annotations to all local frames.
- Add all missing values created or referenced during execution.
- Show the return value for each local frame.

```python
1  x = 1
2  def f(n):
3      def g():
4        return n + x
5        x = n + 5
6      if n % 3 == 0:
7        return g
8      else:
9        return f(n + 1)
10     x = 10
11    z = f(2)
12    q = x + z()
```

Global frame

- `func f(n) [parent=Global]`
- `func _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func f1: _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func f2: _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func f3: _____ [parent=_____]`
- `func _____ [parent=_____]`
- `func _____ [parent=_____]`

Return value

Return value

Return value
3. (3 points) Triangulate

It's easy to see that in any triangle, each side must be shorter than the sum of the other two. Implement `triangle`, which takes three positive numbers, \( a \), \( b \), and \( c \), and returns whether these three numbers could possibly be the lengths of the three sides of a triangle.

```python
def triangle(a, b, c):
    """Return whether \( a \), \( b \), and \( c \) could be the legs of a triangle."

    >>> triangle(3, 4, 5)
    True
    >>> triangle(3, 4, 6)
    True
    >>> triangle(6, 3, 4)
    True
    >>> triangle(3, 6, 4)
    True
    >>> triangle(9, 2, 2)
    False
    >>> triangle(2, 4, 2)
    False
    ""
```

```python
longest = ______________________________________________________________________________

sum_of_others = ________________________________________________________________________

return longest ___________________________________________________________ sum_of_others
```
4. (9 points) Digital

(a) (3 pt) Implement collapse, which takes a non-negative integer, and returns the result of removing all digits from it that duplicate the digit immediately to their right.

```python
def collapse(n):
    """For non-negative N, the result of removing all digits that are equal to the digit on their right, so that no adjacent digits are the same."
    left, last = n // 10, n % 10
    if last == last:
        return last
    elif last == last:
        return collapse(...)  # placeholder for rest of the code
    else:
        return collapse(...) * 10 + ...

>>> collapse(1234)
1234
>>> collapse(12234441)
12341
>>> collapse(0)
0
>>> collapse(3)
3
>>> collapse(1120000013333)
12013
"""
```

left, last = n // 10, n % 10

if last == last:
    return last
elif last == last:
    return collapse(...)  # placeholder for rest of the code
else:
    return collapse(...) * 10 + ...
(b) (6 pt) Implement `find_pair`, which takes a two-argument function, \( p \), as input and returns another function. The returned function takes a non-negative integer \( n \); it returns `True` if and only if \( p \) returns a true value when called on at least one pair of adjacent digits in \( n \), and `False` otherwise.

def find_pair(p):
    """Given a two-argument function \( P \), return a function that takes a non-negative integer and returns \( \text{True} \) if and only if two adjacent digits in that integer satisfy \( P \) (that is, cause \( P \) to return a true value).
    """

    >>> z = find_pair(lambda a, b: a == b)  # Adjacent equal digits
    >>> z(1313)
    False
    >>> z(1234)
    True
    >>> z = find_pair(lambda a, b: a > b)
    >>> z(1234)
    False
    >>> z(123412)
    True
    >>> find_pair(lambda a, b: a <= b)(9753)
    False
    >>> find_pair(lambda a, b: a == 1)(1)  # Only one digit; no pairs.
    False

    def find(n):

        while ____________________________________________:

            if ____________________________________________:

                return ____________________________________________

        else:

            ___________ = ____________________________________________

            # End of while loop
5. (10 points) Please Confirm

**Definition.** A *confirming function* for a sequence of digits, called a *code*, takes a single digit as its only argument. If the digit does not match the first (left-most) digit of the code to be confirmed, it returns *False*. If the digit does match, then the confirming function returns *True* if the code has only one digit, or another confirming function for the rest of the code if there are more digits to confirm.

(a) (5 pt) Implement `confirmer` so that when `confirmer` takes a positive integer `code`, it returns a confirming function for the digits of that `code`.

```python
def confirmer(code):
    """Return a confirming function for CODE.
    >>> confirmer(204)(2)(0)(4) # The digits of 204 are 2, then 0, then 4.
    True
    >>> confirmer(204)(2)(0)(0) # The third digit of 204 is not 0.
    False
    >>> confirmer(204)(2)(1) # The second digit of 204 is not 1.
    False
    >>> confirmer(204)(20) # The first digit of 204 is not 20.
    False
    ""

    def confirm1(d, t):
        def result(digit):
            if d == digit:
                return t
            else:
                return False
        return result

    def extend(prefix, rest):
        """Return a confirming function that returns REST when given the digits of PREFIX.
        For example, if c = extend(12, confirmer(34)), then c(1)(2) returns confirmer(34),
        so that c is a confirming function for 1234.""
        left, last = prefix // 10, prefix % 10

        if ______________________________________________________________________________:
            return ______________________________________________________________________
        else:
            return ______________________________________________________________________

    return ______________________________________________________________________________
```

return ______________________________________________________________________________
(b) **(5 pt)** Given a confirming function, one can find the code it confirms, one digit at a time. Implement `decode`, which takes a confirming function `f` and returns the code that it confirms.

```python
def decode(f, y=0):
    """Return the code for a confirming function f."

    >>> decode(confirmer(12001))
    12001
    >>> decode(confirmer(56789))
    56789
    """

    d = 0

    while d < 10:

        x, code = _________________________________ , _________________________________

        if x == True:
            return code

        elif x == False:
            ________________

        else:
            ________________
```