
CS 61A Structure and Interpretation of Computer Programs
Fall 2022 Midterm 2 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

Exam generated for <EMAILADDRESS> 3

1. (7.0 points) What would Python Python?

Assume the code below has been executed.

class Snake:
legs = 0
def __init__(self, name):

self.name = name
def __str__(self):

return self.name
def run(self, s):

print("Snakes don't run")
return self.crawl()

def crawl(self):
print(f"{self} crawled")

def eat(self, s):
self.run(s)
print("Nom nom")

class Python(Snake):
def run(self, s):

print(eval(s)) # eval(s) evaluates string s as a Python expression

snek = Snake("atari")
solidsnake = Snake("David")
solidsnake.legs = 2
solidsnake.run = lambda s: print("He ran")
python = Python("pypy")

For each expression below, write the output displayed by the interactive Python interpreter when the
expression is evaluated.

• If an output has multiple lines, write each line separately.
• If an error occurs, write “Error”, but include all output displayed before the error.
• If evaluation would run forever, write “Forever”.
• To display a function value, write “Function”.

Each expression below should be evaluated independently of previously-evaluated expressions.

(a) (1.0 pt) [snek.legs, Snake.legs]

[0, 0]

(b) (2.0 pt) solidsnake.eat("python")

He ran
Nom nom

Exam generated for <EMAILADDRESS> 4

(c) (2.0 pt) python.eat("snek")

atari
Nom nom

(d) (2.0 pt) Snake.run(python, python)

Snakes don’t run
pypy crawled

Exam generated for <EMAILADDRESS> 5

2. (6.0 points) Environmental Disaster

Your friend asks you to help debug their program below, which doesn’t print what they expect. Complete the
environment diagram, then answer questions about it. The diagram itself will not be scored; only the questions
based on it.

(a) (1.0 pt) Blank (a): What is the name us bound to in f1?

A list [4, 5, 6]

A list [4, 5]

 A list [4]

(b) (1.0 pt) Blank (b): What is the name f bound to in frame f2?

func of(us) [parent=Global]

 func last(k) [parent=f1]

None of the above

(c) (1.0 pt) Blank (c): What is the name result bound to in frame f2?

 The same list bound to the name result in the Global frame

A list that is not bound to any name in the Global frame

(d) (1.0 pt) Blank (d): What is the return value of frame f2?

The same list bound to the name result in f2

A list that is one element longer than the one bound to the name result in f2

 None of the above

Exam generated for <EMAILADDRESS> 6

(e) (2.0 pt) What is displayed by the last line, print(result)?

[[3], 6, 5, 3]

Exam generated for <EMAILADDRESS> 7

3. (8.0 points) Hog Revisited

In Project 1, we created a simulator for the game of Hog without using lists or iterators. Let’s revise the
implementation, but instead of representing dice as zero-argument functions, we’ll represent dice as iterators
over outcomes.

(a) (3.0 points)

Implement make_test_dice, which takes a list of outcomes. It returns an infinite iterator that repeatedly
cycles through the outcomes.

def make_test_dice(outcomes):
"""Return an infinite iterator that cycles through the elements of outcomes.

>>> dice = make_test_dice([1, 2, 3])
>>> next(dice)
1
>>> next(dice)
2
>>> next(dice)
3
>>> next(dice)
1
>>> next(dice)
2
>>> next(dice)
3
>>> next(dice)
1
>>> next(dice)
2
"""
outcomes = list(outcomes)
while True:

for i in ___(a)___:
___(b)___

i. (1.0 pt) Which of these could fill in blank (a)? Select all that apply.

� outcomes

2 outcomes + make_test_dice(outcomes)

2 outcomes.extend(make_test_dice(outcomes))

2 outcomes[0] + make_test_dice(outcomes[1:])

2 make_test_dice(outcomes) + make_test_dice(outcomes)

2 make_test_dice(outcomes[0]) + make_test_dice(outcomes[1:])

ii. (2.0 pt) Fill in blank (b).

yield i

Exam generated for <EMAILADDRESS> 8

(b) (5.0 points)

Implement roll_dice, which takes two arguments: a positive integer called num_rolls giving the number
of dice to roll and a dice iterator that provides outcomes. It returns the number of points scored by rolling
the dice num_rolls times in a turn. The points scored are either the sum of the dice outcomes or 1 (Sow
Sad).

• Sow Sad. If any of the dice outcomes is a 1, the current player’s score for the turn is 1.

def roll_dice(num_rolls, dice):
"""Return the number of points scored by rolling dice num_rolls times.

>>> dice = make_test_dice([6, 6, 6, 6, 6, 1])
>>> roll_dice(5, dice) # 6, 6, 6, 6, 6
30
>>> roll_dice(5, dice) # 1, 6, 6, 6, 6
1
>>> roll_dice(2, dice) # 6, 1
1
>>> roll_dice(10, make_test_dice([2, 4, 3])) # 2, 4, 3, 2, 4, 3, 2, 4, 3, 2
29
"""
rolls = ___(a)___
if ___(b)___:

return 1
___(c)___

i. (2.0 pt) Fill in blank (a).

[next(dice) for _ in range(num_rolls)]

ii. (1.0 pt) Fill in blank (b).

1 in rolls

iii. (2.0 pt) Fill in blank (c).

return sum(rolls)

Exam generated for <EMAILADDRESS> 9

4. (9.0 points) The Lambdanean Hydra

Heracles is fighting the Lambdanean Hydra, a many-headed monster, where two heads regrow when one head
gets chopped off. A hydra is represented by a tree, each head is represented by a leaf labeled 1, and each non-leaf
node has two branches and is labeled with the number of leaves among its descendants. Here’s a six-headed
hydra named lerna:

lerna=Tree(6,[Tree(4,[Tree(2,[Tree(1),Tree(1)]),Tree(2,[Tree(1),Tree(1)])]),Tree(2,[Tree(1),Tree(1)])])

(a) (4.0 points)

Implement is_hydra, which takes in as input a Tree instance t and determines if t represents a valid
hydra.

def is_hydra(t):
"""Return True if Tree instance t properly represents a hydra and False otherwise.

>>> is_hydra(Tree(1))
True
>>> is_hydra(Tree(2, [Tree(1), Tree(1)]))
True
>>> is_hydra(Tree(3, [Tree(1), Tree(2)])) # Wrong leaf label
False
>>> is_hydra(Tree(3, [Tree(1), Tree(1)])) # Wrong root label
False
>>> is_hydra(Tree(3, [Tree(3, [Tree(1), Tree(1)]), Tree(1)])) # Wrong node label below root
False
>>>is_hydra(lerna) # lerna the six-headed hydra is defined above
True
"""
if t.is_leaf():

return t.label == 1
if len(t.branches) != 2:

return False
return (t.label == ___(a)___) and ___(b)___

i. (2.0 pt) Fill in blank (a).

sum([b.label for b in t.branches])

ii. (2.0 pt) Fill in blank (b).

is_hydra(t.branches[0]) and is_hydra(t.branches[1])

Exam generated for <EMAILADDRESS> 10

(b) (5.0 points)

If Heracles cuts off the second head from the left, two new heads appear there, and all ancestor labels are
updated.

Implement chop_head(hydra, n), which takes as input a Tree instance hydra representing a hydra and a
positive integer n. It mutates hydra by chopping off the nth head from the left (adding two new adjacent
heads in its place).

def chop_head(hydra, n):
"""
>>> lerna = Tree(1)
>>> chop_head(lerna, 1) # Note that n is 1-indexed
>>> chop_head(lerna, 1)
>>> chop_head(lerna, 3)
>>> chop_head(lerna, 1)
>>> chop_head(lerna, 3)
>>> lerna # Now lerna is a six-headed hydra (above left)
Tree(6,[Tree(4,[Tree(2,[Tree(1),Tree(1)]),Tree(2,[Tree(1),Tree(1)])]),

Tree(2,[Tree(1),Tree(1)])])
>>> chop_head(lerna, 2)
>>> lerna # The mutated lerna now has seven heads (above right)
Tree(7,[Tree(5,[Tree(3,[Tree(1),Tree(2,[Tree(1),Tree(1)])]),Tree(2,[Tree(1),Tree(1)])]),

Tree(2,[Tree(1),Tree(1)])])
"""
assert is_hydra(hydra)
assert n > 0 and n <= hydra.label
if hydra.is_leaf():

___(a)___ # This blank may be filled with multiple lines of code
return

___(b)___
left, right = hydra.branches
if ___(c)___:

chop_head(right, ___(d)___)
else:

chop_head(left, n)

Exam generated for <EMAILADDRESS> 11

i. (2.0 pt) Select all options that could fit in blank (a), which may have multiple lines.

Option 1: hydra = Tree(2,[Tree(1), Tree(1)])

Option 2: for _ in range(2):
hydra.branches.append(Tree(1))
hydra.label = 2

Option 3: hydra.label = Tree(2)
hydra.branches = [Tree(1),Tree(1)]

Option 4: hydra.label = 2
hydra.branches = [Tree(1), Tree(1)]

Option 5: hydra.label = 2
hydra.branches = [Tree(1)] * 2

2 Option 1

� Option 2

2 Option 3

� Option 4

2 Option 5

ii. (1.0 pt) Fill in blank (b).

hydra.label += 1

iii. (1.0 pt) Fill in blank (c).

n > left.label

iv. (1.0 pt) Fill in blank (d).

n - left.label

Exam generated for <EMAILADDRESS> 12

5. (7.0 points) Aim for 100

The function count_subsets takes as input a list of positive integers s. It returns the number of lists that sum
to 100 and contain a subset of the elements of s in order.

def count_subsets(s):
"""
>>> count_subsets([25, 50, 75, 100, 125, 150]) # [25, 75], [100]
2
>>> count_subsets([25, 50, 25, 75]) # [25, 75] (first 25), [25, 75] (second 25), [25, 50, 25]
3
>>> count_subsets(list(range(1,10000)))
444793
"""

(a) (5.0 points)

Complete the following implementation of count_subsets.

def count_subsets(s):
def helper(sum_so_far, index):

if ___(a)___:
if ___(b)___:

return 1
return 0

return ___(c)___ + ___(d)___
return helper(0,0)

i. (1.0 pt) Fill in blank (a).

index == s

 index == len(s)

sum_so_far == 100

sum_so_far != 100

ii. (1.0 pt) Fill in blank (b).

index == s

index == len(s)

 sum_so_far == 100

sum_so_far != 100

iii. (1.0 pt) Fill in blank (c).

count_subsets(s[index:])

count_subsets(s[1:])

helper(sum_so_far, index)

 helper(sum_so_far, index + 1)

iv. (2.0 pt) Fill in blank (d).

helper(sum_so_far+s[index], index + 1)

Exam generated for <EMAILADDRESS> 13

(b) (2.0 points)

i. (1.0 pt) What is the order of growth of the time required to evaluate count_subsets, in terms of the
length of s?

 Exponential

Quadratic

Linear

Logarithmic

Constant

ii. (1.0 pt) We decide to rewrite count_subsets, following a different approach:

def count_subsets(s):
values = [1]+[0]*100
for i in s:

for j in reversed(range(100-i+1)):
values[j+i]+=values[j]

return values[100]

What is the order of growth of the time required to evaluate the new version of count_subsets, in
terms of the length of s?

Exponential

Quadratic

 Linear

Logarithmic

Constant

Exam generated for <EMAILADDRESS> 14

6. (8.0 points) Point A to Point B

A graph is a structure consisting of two parts:

• A set of n nodes, which are labeled from 0 to n-1.
• A set of directed edges, which go from one node (the source node) to another node (the destination).

The above is an example of a graph with 6 nodes, with edges represented as arrows. Note that a graph can have:

• Nodes that have no edges to/from them (Node 3)
• Two edges between the same two nodes, with source and destination reversed (The edges between Nodes 0
and 2)

• An edge from a node to itself (Node 5)

However, a graph cannot have two distinct edges from one node to another. For example, we cannot have a
graph where two edges go from Node 0 to Node 1.

We say that a Node j is a destination of Node i if there is a directed edge from Node i to Node j. Thus, in the
above example, Node 0 has two destinations (Nodes 1 and 2), and Node 1 has one destination (Node 4). Note
that Node 0 is not considered a destination of Node 1.

We say that there is a path from Node i to Node j if either i==j, or we can go from Node i to Node j by
following a sequence of edges in the graph. For example, we can get from Node 1 to Node 0 by following the
edges 1->4, then 4->2, then 2->0.

Graphs are often used to represent transportation maps, where nodes represent individual locations, and edges
represent a path you can take to go from one node to another.

A Graph instance is constructed from a number of nodes and begins with no edges. Edges are added, and then
the destinations method lists destinations for a node and the has_path method determines if a path exists
between two nodes.

>>> g = Graph(6) # A graph with 6 nodes and no edges.
>>> g.add_edge(0, 2) # Add an edge from node 0 (source) to node 2 (destination)
>>> g.add_edge(2, 0) # Add an edge from node 2 (source) to node 0 (destination)
>>> g.add_edge(0, 1)
>>> g.add_edge(1, 4)
>>> g.add_edge(4, 2)
>>> g.add_edge(5, 4)
>>> g.add_edge(5, 5)

Exam generated for <EMAILADDRESS> 15

>>> g.destinations(0)
[1, 2]
>>> g.destinations(5)
[4, 5]
>>> g.destinations(3)
[]
>>> g.has_path(0,2) # 0 -> 2
True
>>> g.has_path(5,1) # 5 -> 4 -> 2 -> 0 -> 1
True
>>> g.has_path(3,3) # 3
True
>>> g.has_path(1,5) # No path exists
False

(a) (2.0 points)

Implement the destinations method of the Graph class.

class Graph:
"A graph."

def __init__(self, nodes):
self.nodes = nodes
self.edges = []

def add_edge(self, source, destination):
"Add an edge from source to destination."
if source >= 0 and source < self.nodes:

if destination >= 0 and destination < self.nodes:
if (source, destination) not in self.edges:

self.edges.append((source, destination))

def destinations(self, source):
"Returns a list of all destinations of the given node."
assert source >= 0 and source < self.nodes
return ___(a)___

def has_path(self, source, destination):
"Returns True if a path exists from source to destination, and False otherwise."
... # The implementation of this method is omitted, but assume it works.

i. (2.0 pt) Fill in blank (a).

[i[1] for i in self.edges if i[0] == source]

Exam generated for <EMAILADDRESS> 16

(b) (6.0 points)

The function compose_path takes in a list of functions funcs and three non-negative integers, x, y, and
maxval. It returns whether there exists a list of numbers s such that:

• s begins with x and ends with y.
• s[i+1] = f(s[i]) for some f in funcs, for every adjacent pair of elements s[i] and s[i+1].
• 0 <= s[i] and s[i] < maxval for all elements s[i].

Assume x and y are less than maxval and that all elements of funcs are one-argument functions that take
in an integer and output an integer. Complete the implementation of compose_path. (Hint: Treat each
function call f(x) as “moving” from x to f(x).)

def compose_path(funcs, x, y, maxval):
"""
>>> f, g, h = lambda x: 2*x-1, lambda x: x*x+1, lambda x: x-4
>>> #3->10->6->11->122->118->114->110->106->102->98
>>> # g h f g h h h h h h
>>> compose_path([f, g, h], 3, 98, 1000)
True
>>> #The above path hits 122, and no other path exists to get from 3 to 98
>>> compose_path([f, g, h], 3, 98, 122)
False
>>> [i for i in range(100) if compose_path([h], 10, i, 100)]
[2, 6, 10]
"""
g = Graph(___(a)___)
for f in funcs:

___(b)___:
___(c)___

___(d)___

i. (1.0 pt) Fill in blank (a).

maxval

ii. (1.0 pt) Fill in blank (b).

for j in range(maxval)

iii. (2.0 pt) Fill in blank (c).

g.add_edge(j, f(j))

iv. (1.0 pt) Fill in blank (d).

return g.has_path(x, y) The graph contains all allowed transitions j -> f(j)
after iterating through all f and all j. Therefore, has_path returns whether
a sequence of allowed transitions exists.

Exam generated for <EMAILADDRESS> 17

7. (0.0 points) A+ Question 2: Deforestation

This A+ question is not worth any points. It can only affect your course grade if you have a
high A and might receive an A+. Finish the rest of the exam first!

Implement the function tree_to_graph, which takes as input a Tree instance. It returns a Graph instance
(defined in the previous question) corresponding to the tree, with nodes ordered in pre-order starting with 0.
Pre-order is defined as:

• The root node is assigned the lowest value unassigned.
• After this, the first branch of the tree is assigned values according to pre-order.
• Then, the second branch of the tree is assigned values, and so on.

For example, calling tree_to_graph on this Tree instance to the left should create this Graph instance to the
right.

def tree_to_graph(tree):
def helper(tree, op1, op2):

a = op1()
return op2(a, [helper(b, op1, op2) for b in tree.branches]) or a

num_nodes = helper(tree, ___(a)___, ___(b)___)
g = Graph(num_nodes)
b = iter(range(num_nodes))
helper(tree, ___(c)___,___(d)___)
return g

(a) (0.0 pt) Fill in blank (a).

lambda: 1

(b) (0.0 pt) Fill in blank (b).

lambda a, b: a+sum(b)

(c) (0.0 pt) Fill in blank (c).

lambda: next(b)

Exam generated for <EMAILADDRESS> 18

(d) (0.0 pt) Fill in blank (d).

lambda a, b: any([g.add_edge(a,i) for i in b])
See the following page for an explanation.

Exam generated for <EMAILADDRESS> 19

8. (0.0 points) OPTIONAL

(a) (0.0 pt) Draw a picture related to CS 61A or write a program about CS 61A.

A+ question explanation: There are three parts to this question:
• Determining the number of nodes in the tree (blank a and b)
• Creating a graph with the given number of nodes (blank c)
• Adding the appropriate edges to the graph (blank d and e)

Step 2 can be done fairly easily by calling Graph(numnodes)
For Steps 1 and 3, the tricky part is that the requested behavior must be
achieved solely through the two lambda function inputs of the helper.
Step 1 can be done by using op1 as a lambda that returns 1 and op2 as a
function to add the results of all branches
Step 3 is trickier, but can be done if we make op1 return the ID of the
graph node corresponding to the current tree node. As it turns out, the
pre-order definition perfectly matches assigning IDs in numeric order (using
the traversal order given in the helper function), so we can use the iterator
b to perform this. op2 is then set to run add_edge for each element of the
branches, and return a falsey value so that we output a. Note that the
solution provides must use any instead of all, in order to return False on
leaves.

Exam generated for <EMAILADDRESS> 20

No more questions.

