
CS 61A Structure and Interpretation of Computer Programs
Fall 2023 Midterm 2

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (4.0 points) What Would Python Display?

Assume the following code has been executed.

s = range(3, 7)
t = iter(s)
u = map(lambda x: 2 * x, t)
v = [next(t), next(t)] # This line does not cause an error

Choose the output displayed by the interactive Python interpreter when each expression below is
evaluated or Error if an error occurs. These expressions are evaluated in order and the value of later
expressions may be affected by evaluating previous expressions.

(a) (1.0 pt) [-k for k in v if k in s]

[]

[3, 4]

[-3, -4]

Error

(b) (1.0 pt) tuple(u)

(3, 4, 5, 6)

(3, 4, 5, 6, 7)

(6, 8, 10, 12)

(6, 8, 10, 12, 14)

(10, 12)

(10, 12, 14)

Error

(c) (1.0 pt) next(t)

3

5

range(3, 7)

range(5, 7)

Error

(d) (1.0 pt) next(iter(s)) + next(iter(s))

6

7

10

11

Error

Exam generated for <EMAILADDRESS> 4

2. (6.0 points) Making a List, Checking it Twice

Complete the environment diagram below and then answer the questions that follow. There is one question
for each labeled blank in the diagram. The blanks with no labels have no questions associated with them and
are not scored. Some blanks may be empty or unused. If a blank contains an arrow to a function,
write the function as it would appear in the diagram. Do not add frames for calls to built-in
functions.

Reminder: list(s) creates a new list with the same elements as s; s.pop() removes and returns the last
element of s.

(a) (3.0 pt) What value fills blank (a)? Select all that apply.

2 None

2 A list

2 A number

2 The object bound to global s

2 The object bound to global t

2 The same object that s[0] would evaluate to in the global frame

2 The same object that s[1] would evaluate to in the global frame

2 The same object that t[0] would evaluate to in the global frame

2 The same object that t[1] would evaluate to in the global frame

(b) (3.0 pt) What would be printed by the expression print(t) at the end?

Exam generated for <EMAILADDRESS> 5

3. (6.0 points) 24-Hour Library

Anyone can check out a book from a library and then bring that book back. Implement the Library and
Book classes. A Library takes a list of unique strings called titles and constructs a books dictionary that
has strings as keys and Book objects as values. Its checkout method takes a string title and returns the
corresponding Book object if that title is not checked out, or prints a message. After bring_back is invoked
on that book, it can be checked out again.

class Library:
"""A library with one copy of each title that can be checked out.

>>> cs = Library(['Composing Programs', 'Python Docs', 'Berkeley Academic Guide'])
>>> bs = [cs.checkout('Composing Programs'), cs.checkout('Python Docs')]
>>> cs.checkout('Composing Programs') # This time, no Book is returned
Composing Programs is checked out
>>> bs[0].bring_back()
>>> cs.checkout('Composing Programs').title # This time, a Book is returned
'Composing Programs'
"""
def __init__(self, titles):

self.books = {t: Book(t, _______) for t in titles}
(a)

self.out = [] # A list of Book objects

def checkout(self, title):
assert title in self.books, title + " isn't in this library's collection"
book = _______

(b)
if book not in self.out:

(c)

return book
else:

print(book, 'is checked out')

class Book:
def __init__(self, title, library):

self.title = title # a string
self.library = library # a Library object

def bring_back(self):
_______.remove(_______)

(d) (e)

def __str__(self):
return _______

(f)

Exam generated for <EMAILADDRESS> 6

(a) (1.0 pt) Fill in blank (a).

self

self.books

Library

Library()

Library(titles)

(b) (1.0 pt) Fill in blank (b).

(c) (1.0 pt) Fill in blank (c).

out.append(book)

out.extend(book)

Library.append(book)

Library.extend(book)

self.out.append(book)

self.out.extend(book)

(d) (1.0 pt) Fill in blank (d).

self.

self.out

library

library.out

self.library.out

(e) (1.0 pt) Fill in blank (e).

self

title

library

self.title

self.library

Exam generated for <EMAILADDRESS> 7

(f) (1.0 pt) Fill in blank (f).

self

title

self.title

repr(self)

repr(title)

repr(self.title)

Exam generated for <EMAILADDRESS> 8

4. (16.0 points) A Perfect Question

Definition. A perfect square is k*k for some integer k.

(a) (7.0 points)

Implement fit, which takes positive integers total and n. It returns True or False indicating whether
there are n positive perfect squares that sum to total. The perfect squares need not be unique.

def fit(total, n):
"""Return whether there are n positive perfect squares that sums to total.

>>> [fit(4, 1), fit(4, 2), fit(4, 3), fit(4, 4)] # 1*(2*2) for n=1; 4*(1*1) for n=4
[True, False, False, True]
>>> [fit(12, n) for n in range(3, 8)] # 3*(2*2), 3*(1*1)+3*3, 4*(1*1)+2*(2*2)
[True, True, False, True, False]
>>> [fit(32, 2), fit(32, 3), fit(32, 4), fit(32, 5)] # 2*(4*4), 3*(1*1)+2*2+5*5
[True, False, False, True]
"""
def f(total, n, k):

if _______:
(a)

return True

elif _______:
(b)

return False
else:

return _______
(c)

return f(total, n, 1)

i. (2.0 pt) Select all of the options that could fill blank (a).

2 total == 0

2 n == k

2 total == 0 and n == 0

2 total == k * k

2 total == k * k and n == 1

2 total == n * k * k

ii. (2.0 pt) Fill in blank (b).

iii. (3.0 pt) Fill in blank (c) with an expression of the form f(___, ___, ___) ___ f(___, ___, ___).

Exam generated for <EMAILADDRESS> 9

(b) (9.0 points)

Implement the generator function squares, which takes positive integers total and k. It yields all lists
of perfect squares greater or equal to k*k that sum to total. Each list is in non-increasing order (large to
small).

def squares(total, k):
"""Yield the ways in which perfect squares greater or equal to k*k sum to total.

>>> list(squares(10, 1)) # All lists of perfect squares that sum to 10
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [4, 4, 1, 1], [9, 1]]
>>> list(squares(20, 2)) # Only use perfect squares greater or equal to 4 (2*2).
[[4, 4, 4, 4, 4], [16, 4]]
"""
assert total > 0 and k > 0
if total == k * k:

yield _______
(d)

elif total > k * k:

for s in _______:
(e)

yield _______
(f)

yield from squares(total, k + 1)

i. (2.0 pt) Fill in blank (d).

ii. (3.0 pt) Fill in blank (e).

iii. (1.0 pt) Select all of the options that could fill in blank (f).

2 s + k*k

2 s.append(k*k)

2 s + [k*k]

2 [s] + [k*k]

iv. (3.0 pt) Write an expression containing a that evaluates to the shortest list of perfect squares that
sum to an integer a. For example, if a = 32, your expression should evaluate to [16, 16] (not [25,
4, 1, 1, 1]). If there are two or more such lists that are both shortest, it can evaluate to any of
them. Assume squares is implemented correctly.

Exam generated for <EMAILADDRESS> 10

5. (7.0 points) Only Paths

Implement only_paths, which takes a Tree of numbers t and a number n. It returns a new Tree with only the
nodes of t on a path from the root to a leaf with labels that sum to n, or None if no path sums to n. Do not
mutate t.

The Tree class appears on the midterm 2 study guide. Here is an illustration of the doctest examples involving
t.

def only_paths(t, n):
"""Return a Tree with only the nodes of t along paths from the root to a leaf of t
for which the node labels of the path sum to n. If no paths sum to n, return None.

>>> print(only_paths(Tree(5, [Tree(2), Tree(1, [Tree(2)]), Tree(1, [Tree(1)])]), 7))
5

2
1

1
>>> t = Tree(3, [Tree(4), Tree(1, [Tree(3, [Tree(2)]), Tree(2, [Tree(1)]), Tree(5), Tree(3)])])
>>> print(only_paths(t, 7))
3

4
1

2
1

3
>>> print(only_paths(t, 9))
3

1
3

2
5

>>> print(only_paths(t, 3))
None
"""
if _______:

(a)

return t

new_branches = [_______ for b in t.branches]
(b)

if _______(new_branches):
(c)

return Tree(t.label, [b for b in new_branches if _______])
(d)

Exam generated for <EMAILADDRESS> 11

(a) (2.0 pt) Fill in blank (a).

(b) (3.0 pt) Fill in blank (b).

(c) (1.0 pt) Fill in blank (c).

all

any

has

only_paths

(d) (1.0 pt) Fill in blank (d).

only_paths(b, n)

b.label == n

b.label != n

b is None

b is not None

(e) This A+ question is not worth any points. It can only affect your course grade if you have
a high A and might receive an A+. Finish the rest of the exam first! Fill in the blank to
implement only_long_paths, which takes a Tree of numbers t and a number n. It returns a new Tree
containing only the nodes of t that lie on a path from the root to a leaf for which the sum of the labels
plus the length of the path is n. Do not mutate t. You may not write and, or, if, [or]. Assume
only_paths is implemented correctly.

only_paths = _____________

def only_long_paths(t, n):
"""Return a Tree with only the nodes of t along paths from the root to a leaf of t
for which the sum of node labels plus the length of the path is n.

>>> example = Tree(5, [Tree(3), Tree(1, [Tree(2)]), Tree(1, [Tree(1)])])
>>> only_long_paths(example, 10) # Result has paths 5-3 (length 2) and 5-1-1 (length 3)
Tree(5, [Tree(3), Tree(1, [Tree(1)])])
"""
return only_paths(t, n)

Exam generated for <EMAILADDRESS> 12

6. (6.0 points) After Party

Implement after, which takes a linked list s and values a and b. It returns whether an element of s equal to b
appears after an element of s equal to a. The Link class appears on the Midterm 2 study guide.

def after(s, a, b):
"""Return whether b comes after a in linked list s.

>>> t = Link(3, Link(6, Link(5, Link(4))))
>>> after(t, 6, 4)
True
>>> after(t, 4, 6)
False
>>> after(t, 6, 6)
False
"""
def find(s, n, f):

if s == Link.empty:

return _______
(a)

elif s.first == n:
return f(s.rest)

else:
return find(s.rest, n, f)

return find(s, a, lambda rest: _______)
(b)

(a) (1.0 pt) Fill in blank (a).

n

True

False

a < b

f(Link.empty)

(b) (4.0 pt) Fill in blank (b). You may not use or, and, if, [, or].

Exam generated for <EMAILADDRESS> 13

(c) (1.0 pt) What is the order of growth of the run time of an efficient implementation of after in terms of
the length of s? Here, efficient means that you have filled in the blanks to give the function the fastest
order of growth.

Constant

Logarithmic

Linear

Quadratic

Exponential

Exam generated for <EMAILADDRESS> 14

No more questions.

