CS 61A Structure and Interpretation of Computer Programs
F&H 2025 MIDTERM 1 SOLUTIONS

INSTRUCTIONS

This is your exam. Complete it either at exam.cs6la.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.
(O You must choose either this option
(O Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.
O You could select this choice.
] You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

You can complete these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS>

1. (6.0 points) What Would Python Do(ot)?
Assume the code below has been executed, and no errors occurred.
about = 6-7

about, face = 6, about * 7

def make_something(f):
if f(about):
f = lambda k: about
def something(about) :
return print(f (about) or print(about))
return something

f = lambda x: 10 * x
Example Question: What would be displayed by evaluating print(5)? Answer: 5
(a) (2.0 pt) What would be displayed by evaluating print (print (face))

-7 None

(b) (4.0 pt) What would be displayed by evaluating make_something(print) (8)

6 8 8 None

Exam generated for <EMAILADDRESS>

2. (5.0 points)

Silksong

Complete the environment diagram below to answer the questons about the calls to print. Only the questions
will be scored, not the diagram. Each call to print is evaluated once, and there are no errors caused by running
this code.

def uselsilk}:
a=2
printi{lacei{silk), a) # (al
def laceipin}:
a = printipin(})
return a

(b}

a=1

: thread = lambda x: a + =
ta=3
: needle = lambda: threadia * 1@}

1 uselneedle)
: printial

icl

Global frame use

lace

— func use{silk]) [parent=Global]

— func lacelpin]} [parent=Global]

£l

parent:

L —]
—
L
L
L
[
L
L
L

Raturn value

21 parent:
N R
B
[
Raturn value
LEH parent:
—
Raturn value
fa: parent:

L
Raturn value

(a) (2.0 pt) What is displayed by the call to print on line 3?7

None 2

(b) (2.0 pt) What is displayed by the call to print on line 67

O 21
O 22
O 23
O 31
O 32
0 33

Exam generated for <EMAILADDRESS>

(c) (1.0 pt) What is displayed by the call to print on line 15?7
O 2
o
O None

Exam generated for <EMAILADDRESS> 6

3. (8.0 points) Saja Boys

Definition. A positive integer is patterned if every odd digit has a larger even digit somewhere before it. For
example, 4123827 is patterned because the odd digit 7 has 8 (which is even and larger than 7) before it, and the
3 and 1 both have 4 before them.

Implement patterned, which takes a positive integer n. It returns True if n is patterned and False otherwise.
Your implementation should iterate through the digits of n just once. The name odd in the implementation
should always be assigned to an integer from 0 to 9 (inclusive).

def patterned(n):
"""Return whether every odd digit of n has a larger even digit somewhere before it.

>>> patterned(4123827) # 8 is before 7; 4 is before 1 and 3

True

>>> patterned(4412123384137)

True

>>> patterned(2468) # No odd digits

True

>>> patterned(1) # No even digits

False

>>> patterned(8192) # 9 does not have a larger even digit before it (or anywhere)
False

>>> patterned(238) # 3 does not have a larger even digit before it (8 comes after)
False

>>> patterned(3888) # 3 does not have a larger even digit before it (8 comes after)
False

>>> patterned(4321587) # 5 does not have a larger even digit before it (8 comes after)
False

odd = 0 # Hint: use the name odd to keep track of a digit you'll need later
while n:

n, last = n // 10, n % 10

if last % 2 ==
(a)
elif _______
(®)
(c)
return

Exam generated for <EMAILADDRESS>

(a) (2.0 pt) Fill in blank (a).

C) return False

(O return max(n) > last

O return n % 10 > last

(O returnn % 2 == 0 and n % 10 > last
O o0dd =0

O odd = last

(O odd =n % 10

O o0dd = max(n % 10, last)

@ o0dd = max(odd, last)

(b) (2.0 pt) Fill in blank (b). You may not use str or len or [or]

last > odd

(c) (2.0 pt) Fill in blank (c).

() return False

O return max(n) > last

O return n % 10 > last

(O returnn % 2 == 0 and n % 10 > last

@® odd =0

O odd = last

O odd =n ¥% 10

O o0dd = max(n % 10, last)

O o0dd = max(odd, last)
(d) (2.0 pt) Fill in blank (d).

C) True

C) False

@® odd ==

O odd > 0

C) last ==

() last > O

O last % 2==0

(O last % 2 == 1

Exam generated for <EMAILADDRESS> 8

4. (16.0 points) We’re Going Up, Up, Up

Definitions. An up-sequence is a sequence of positive integers in which each term is larger than the last. The
next function £ for an up-sequence takes a non-negative integer t and encodes the sequence as follows: If t is
any term of the sequence except the last one, then f (t) returns the next term in the sequence after t. If t is
the last term of the sequence or not a term in the sequence, £ (t) returns 0. Finally, when t is 0, then £ (0)
returns the first term of the sequence. For example, fifty_evens below is a next function for the sequence 2, 4,
6,8, ..., 98, 100.
def fifty_evens(t):

"The next function for the finite sequence of the first 50 positive even numbers."

if t % 2 ==0 and t < 100:

return t + 2
return O

(a) (6.0 points)

Implement sum_sequence, which takes a next function f for a finite up-sequence. It returns the sum of
the terms of that sequence.

def sum_sequence(f):
"""Return the sum of terms in a finite sequence.

>>> sum_sequence (fifty_evens) #2+4+6+8+ ...+ 98+ 100 = 2550
2550
t= _______

(a)
total = 0
while t:

t, total = _______ P
(©) (c)

return total

i. (2.0 pt) Fill in blank (a).

£(0)

ii. (2.0 pt) Fill in blank (b).

f(t)

iii. (2.0 pt) Fill in blank (c).
Q total + 1
@ total + ¢
O total + f
O total + fifty_evens
O total + f(t)
O total + fifty_evens(t)

Exam generated for <EMAILADDRESS> 9

(b) (6.0 points)
Here is the next function for the infinite up-sequence of positive perfect squares: 1, 4, 9, 16, 25, ...

def next_square(t):
"""Compute the next perfect square.

>>> next_square (0)

1

>>> next_square(16)

25

>>> next_square(17) # Not a perfect square

0

nun

sqrt_t = t **x 0.5 # The square root of t

if sqrt_t == round(sqrt_t): # Make sure t was a perfect square
return (round(sqrt_t) + 1) **x 2 # Return the next perfect square

return 0O

Implement cap, which takes a next function f for an infinite up-sequence and a positive integer n. It
returns a next function for the finite up-sequence containing the terms of f that are less than or equal to n.
If n is a term of the up-sequence for f, then it is included in the result’s sequence.

def cap(f, n):
"""Return the next function for the up-sequence for f up to (and possibly including) n.

>>> squares_up_to_25 = cap(next_square, 30) # 30 is not in the next_square sequence
>>> squares_up_to_25(4)

9

>>> squares_up_to_25(16)

25

>>> squares_up_to_25(25)

0

>>> squares_up_to_25(17) # 17 is not in the next_square sequence
0

>>> cap(next_square, 81)(64) # 81 is in the next_square sequence

81

def capped(t):

if _______
(d)
(e)
else:
return

return capped

Exam generated for <EMAILADDRESS>

i. (2.0 pt) Fill in blank (d).

f(t) >n

ii. (2.0 pt) Fill in blank (e).

Ot=0

On+=1
On—=1
Ot+=1
Ot-=1
Ot =£(@)

Ot = next_square (t)
C) return n
() return t

‘ return 0O

iii. (2.0 pt) Fill in blank (f).
O n
Ot
O f
® (v
Q next_square

(O next_square(t)

Exam generated for <EMAILADDRESS> 11

(c) (4.0 points)

Definition. The previous function g for an up-sequence takes a non-negative integer t. If t is any other
term than the first, g(t) is the previous term. If t is the first term or not a term at all, g(t) returns 0.
g(0) is the last term.

Implement reverse, which takes a next function f for a finite up-sequence. It returns the previous function
for that same sequence. You may call max_term, which is described below, but you don’t need to implement
max_term.

def max_term(f):
"""Returns the largest term in the finite up-sequence for next function f.

>>> max_term(cap(next_square, 20)) # 16 is the largest square less than or equal to 20.
16

Implementation omitted, but you can assume that the function is implemented correctly.

def reverse(f):
"""Return the previous function for the up-sequence encoded by next function f.

>>> rev_squares = reverse(cap(next_square, 30)) # Goes in reverse through 1, 4, 9, 16, 25
>>> print(rev_squares(0), rev_squares(25), rev_squares(16), rev_squares(9), rev_squares(4))

2516 9 4 1

>>> rev_squares(l) # 1 is the first term

0

>>> rev_squares(10) # 10 is not in the sequence
0

nun
def previous(t):
if t ==

return

>
Il

>
|

e

return x

return previous

i. (2.0 pt) Fill in blank (g).

maxzerm(f)

Exam generated for <EMAILADDRESS>

ii. (2.0 pt) Fill in blank (h).

f(x) 1=t

Exam generated for <EMAILADDRESS> 13

(d) (0.0 points)

This A+ question is not worth any points. It can only affect your course grade if you have
a high A and might receive an A+. Finish the rest of the exam first!

Implement sum_below, which takes a next function f for an infinite up-sequence and a positive integer n
that is a term of the sequence. It returns the sum of the terms of the sequence for £ that are less than (but
not including) n.

You may not use cap or max_term or reverse.
You may not use if or else or [or].

def sum_below(f, n):
"""Return the sum of the terms of the sequence for f that are below n,
where n is a term in the sequence for f.

>>> sum_below(next_square, 25) # 1 + 4 + 9 + 16
30

assert f(n), 'n is not a term of the up-sequence for f'
return sum_sequence(_______)

i. (0.0 pt) Fill in blank (i).

lambda u: f(u) - n and f(u) lambda u: (f(u) < n and f(u)) or O lambda
t: int(f(t) < n)*f(t)

Exam generated for <EMAILADDRESS>

No more questions.

14

