
CS 61A Structure and Interpretation of Computer Programs
Fall 2025 Midterm 2 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (5.0 points) What Would Python Display?

Assume the following code has been executed.

def weird(s):
if s:

if len(s) > 1:
yield s[1]

for x in weird(s[1:]):
yield x

yield s[0]

t = weird([5, [6, 7], 8])

def even(s):
def weirder(t, i):

if i < len(s):
t.append(s[i-1])
t.append(s[i])
weirder(t, i * 2)

return t
return weirder([], 1)

Write the output displayed by each expression below or Error if an error occurs. If some output is displayed
before the error, include it. Assume that each expression is evaluated in order and sequentially, so evaluating the
first could affect the value of the second. Write Generator for a generator object and Function for a function.

(a) (1.0 pt) print(next(t))

5

6

7

 [6, 7]

(b) (3.0 pt) print([x for x in t])

[8, 8, [6, 7], 5]

(c) (1.0 pt) What is the order of growth of the time it takes to execute even(s) for a list of numbers s in
terms of the length of s? Assume that len, list.append, accessing a list item using square brackets, and
all arithmetic operators (such as -, <, and *) each takes a constant amount of time.

exponential

quadratic

linear

 logarithmic

constant

Exam generated for <EMAILADDRESS> 4

2. (4.0 points) That’s a Wrap

Answer the question below about this code. Draw an environment diagram, but the diagram itself will not be
scored.

(a) (4.0 pt) What is displayed by running this code? If the code errors, write Error.

[5, [3, [6, [7], 2]]]

Exam generated for <EMAILADDRESS> 5

3. (5.0 points) Inclusive

Definition: A tree whole includes a tree part if it is possible to create a tree with the same repr string as
part by removing some of the nodes of whole (but making no other changes). When a node is removed, all of
its children are removed as well. The order of the nodes that remain must match, so that the repr string is the
same.

Implement includes, which takes a Tree instance part and a Tree instance whole and returns whether whole
includes part. The Tree class appears on the Midterm 2 Study Guide (Page 2 left column).

def includes(part, whole):
"""Return whether the Tree part is included in the Tree whole.

>>> p1 = Tree(2, [Tree(20), Tree(22)])
>>> right = Tree(2, [Tree(19), Tree(20), Tree(21), Tree(22), Tree(23)])
>>> wrong = Tree(2, [Tree(19), Tree(22), Tree(20), Tree(23)])
>>> [includes(p1, right), includes(p1, wrong), includes(Tree(1, [right]), p1)]
[True, False, False]
>>> p2 = Tree(1, [Tree(6), p1])
>>> includes(p2, Tree(1, [Tree(5), Tree(6, [Tree(7)]), wrong, right]))
True
>>> includes(p2, Tree(1, [Tree(5), Tree(6, [Tree(7)]), wrong, Tree(8, [right])]))
False
"""
if whole.label != part.label:

return False
p, w = 0, 0
while _______:

(a)

if _______:
(b)

p += 1
w += 1

return _______
(c)

(a) (1.0 pt) Fill in blank (a).

p < len(part.branches)

w < len(whole.branches)

p < len(part.branches) or w < len(whole.branches)

 p < len(part.branches) and w < len(whole.branches)

(b) (2.0 pt) Fill in blank (b).

includes(part.branches[p], whole.branches[w])

Exam generated for <EMAILADDRESS> 6

(c) (2.0 pt) Fill in blank (c).

p == len(part.branches)

Exam generated for <EMAILADDRESS> 7

4. (6.0 points) Exclusive

(a) (2.0 pt) Implement exclude, which takes a list of numbers s and a number x. It returns a list with all the
elements of s that are not equal to x. The input list should not be modified. It is possible that s could be an
empty list.

Write your answer directly in the blank below.

def exclude(s, x):
"""Return a list with all of the elements of s except those equal to x.

>>> a = [3, 4, 5, 3.0, 6, 5, 3]
>>> exclude(a, 3)
[4, 5, 6, 5]
>>> a # no change to a
[3, 4, 5, 3.0, 6, 5, 3]
"""

return ___

(b) (4.0 pt) Implement exclude_link, which takes a linked list of numbers s and a number x. It returns a
linked list with all the elements of s that are not equal to x. The input linked list should not be modified. It is
possible that s could be an empty linked list. The Link class appears on the Midterm 2 Study Guide (Page 2
left column).

Write your answers directly in the blanks below.

def exclude_link(s, x):
"""Return a linked list with all of the elements of linked list s except those equal to x.

>>> a = Link(3, Link(4, Link(5, Link(3.0, Link(6, Link(5, Link(3)))))))
>>> exclude_link(a, 3)
Link(4, Link(5, Link(6, Link(5))))
>>> a # no change to a
Link(3, Link(4, Link(5, Link(3.0, Link(6, Link(5, Link(3)))))))
"""

if ___:

return ___

elif ___:

return ___

else:

return ___

(a) Implement exclude.

[y for y in s if y != x]

Exam generated for <EMAILADDRESS> 8

(b) Fill in the first blank of exclude_link (if condition).

s is Link.empty

(c) Fill in the second blank of exclude_link (first return statement).

s

(d) Fill in the third blank of exclude_link (elif condition).

s.first == x

(e) Fill in the fourth blank of exclude_link (elif return statement).

exclude_link(s.rest, x)

(f) Fill in the fifth blank of exclude_link (else return statement).

Link(s.first, exclude_link(s.rest, x))

Exam generated for <EMAILADDRESS> 9

5. (10.0 points) Pizza Parlor

A Pizza Parlor has attributes for its name (str), the price (int) of each pizza it sells, the number of pizzas
(int) it has available to cook, an alt (an alternative Parlor) to help with large orders, and its total profit
(int). Its order method takes a positive integer quantity and optionally a Parlor instance source and
processes an order as follows. A Parlor will cook at most its number of pizzas. If an order is larger than its
number of pizzas, it will order the rest from its alt. Its profit increases by its price times the quantity of
pizzas ordered, but decreases by its alt’s price times the quantity it orders from alt. A message is printed
each time an order is completed or made with another Parlor as the source. A MegaParlor can cook any
quantity of pizzas and has no alt.

class Parlor:
"""A Pizza Parlor has an alt(ernative) Parlor that helps it handle big orders.

>>> c = Parlor('Sliver', 3, 10, Parlor('Cheeseboard', 4, 10, MegaParlor(5)))
>>> c.order(6) # All $3*6 goes to Sliver; it has 4 pizzas left
Sliver now has $18 profit
>>> c.order(6) # Another $3*6 goes to Sliver, which pays $4*2 to Cheeseboard
Sliver forwarded an order of 2 to Cheeseboard
Cheeseboard now has $8 profit
Sliver now has $28 profit
>>> c.order(10) # Sliver gets $3*10 but pays Cheeseboard $4*10, which pays $5*2 to MEGA
Sliver forwarded an order of 10 to Cheeseboard
Cheeseboard forwarded an order of 2 to MEGA
MEGA now has $10 profit
Cheeseboard now has $38 profit
Sliver now has $18 profit
"""
def __init__(self, name, price, pizzas, alt):

self.name, self.price, self.pizzas, self.alt = name, price, pizzas, alt
self.profit = 0

def cook(self, q):
overload = _______ # The quantity that must be ordered from alt

(a)
self.pizzas -= (q - overload) # The quantity cooked by this Parlor
return overload

def order(self, quantity, source=None):
if isinstance(source, Parlor):

print(source.name, 'forwarded an order of', quantity, 'to', self.name)
self.profit += _______
rest = _______ (b)

(c)
if rest:

self.profit -= _______
_______ (d)

(e)
print(f'{self.name} now has ${self.profit} profit')

class MegaParlor(Parlor):
def __init__(self, price):

self.name, self.price, self.profit = "MEGA", price, 0

def cook(self, q):
return _______

Exam generated for <EMAILADDRESS> 10

(f)

(a) (1.0 pt) Fill in blank (a).

q - self.pizzas

abs(q - self.pizzas)

 max(0, q - self.pizzas)

min(0, q - self.pizzas)

(b) (1.0 pt) Fill in blank (b).

price * quantity

price * self.quantity

price * pizzas

price * self.pizzas

 self.price * quantity

self.price * self.quantity

self.price * pizzas

self.price * self.pizzas

(c) (2.0 pt) Fill in blank (c). IMPORTANT: You may not call type or isinstance.

self.cook(quantity)

(d) (2.0 pt) Fill in blank (d).

rest * self.alt.price

(e) (3.0 pt) Fill in blank (e). IMPORTANT: You may not write =.

self.alt.order(rest, self)

(f) (1.0 pt) Fill in blank (f).

0

Exam generated for <EMAILADDRESS> 11

6. (20.0 points) Two Topping Pizzas

Kay and John want to share a pizza. Kay likes mushroom and John likes pineapple, but they won’t eat a pizza
that has a mushroom slice next to a pineapple slice (eek!). A pizza with n slices is represented as a length-n
string containing M for a mushroom slice, P for a pineapple slice, and _ for a slice with no topping. Slices are
next to each other if they are adjacent in the string or are the first and last element of the string. Kay and
John won’t eat MMMMPPPP (because MP) or MM__PP (because the first M is next to the last P), but will eat these:
'MM__M_PP_M', '_P_M_P_M', and '_PP_MM_P_M_'.

(a) (2.0 points)

Implement symmetrical, which takes a dictionary d and returns True if for every pair (k, v) for which
d[k] == v, it’s also true that d[v] == k, and returns False otherwise. Assume None is not a key or value
in d.

The get method of a dict takes a key and returns the value for that key if the key is in the dictionary
and otherwise returns None.

def symmetrical(d):
"""Return whether every key-value pair in d is also a value-key pair.

>>> symmetrical({'M': 'P', 'P': 'M', 'G': 'G'})
True
>>> symmetrical({'M': 'P', 'P': 'M', 'G': 'M'}) # No M->G
False
>>> symmetrical({'M': 'P', 'P': 'M', 'G': 'T'}) # No T->G
False
"""
return all([_______ for k in d.keys()])

(a)

i. (2.0 pt) Fill in blank (a).

k in d and d[k] in d

k in d.keys() and d[k] in d.values()

k in d.keys() and v in d.values()

d[k] == d.get(k)

d[k] == d.get(v)

d[k] == v and d.get(v) == k

d[k] != v or d.get(v) == k

d[k].get(v) == v

d[k].get(v) == k

d[k].get(k) == v

d[k].get(k) == k

d.get(d[k]) == v

 d.get(d[k]) == k

d.get(d[k]) == d.get(v)

d.get(d[k]) == d.get(k)

Exam generated for <EMAILADDRESS> 12

(b) (4.0 points)

Implement acceptable, which takes a non-empty string pizza and a symmetrical dictionary of strings
disallow. It returns whether pizza represents a pizza in which no slice that is next to another slice
appears as a key-value pair in disallow. Assume that every key in disallow is not equal to its value.

def acceptable(pizza, disallow={'M': 'P', 'P': 'M'}):
"""Return whether there are no slices next to each other with a disallowed topping pair.

>>> acceptable("MM_PPP__M")
True
>>> acceptable("MM__PPP") # The first slice M and last slice P are next to each other.
False
>>> acceptable("MM__PPP_")
True
>>> acceptable("MM__MPPP_")
False
"""
assert symmetrical(disallow)
previous = ''
for slice in pizza:

if previous _______:
(b)

return False

(c)
return _______

(d)

i. (1.0 pt) Fill in blank (b).

or disallow.get(previous) == slice

 and disallow.get(previous) == slice

or disallow.get(previous) == disallow.get(slice)

and disallow.get(previous) == disallow.get(slice)

ii. (1.0 pt) Fill in blank (c).

 previous = slice

previous = pizza[slice]

previous = previous + 1

slice = previous

slice = pizza[slice]

slice = disallow.get(previous)

iii. (2.0 pt) Fill in blank (d). IMPORTANT: You may not call acceptable.

disallow.get(slice) != pizza[0]

Exam generated for <EMAILADDRESS> 13

(c) (6.0 points)

Implement count_pizzas, which takes a positive integer num_slices and returns the number of different
pizzas that have mushroom (M), pineapple (P) or no topping (_) slices without M next to P. You may not
call acceptable.

def count_pizzas(num_slices):
"""Return the number of ways to top a pizza with num_slices.
>>> count_pizzas(1) # One slice can have mushroom, or pineapple, or no topping.
3
>>> count_pizzas(2) # MM M_ _M __ PP P_ _P
7
"""
def f(n, first, previous):

if _______:
(e)

if first == previous or _______:
return 1 (f)

return 0
allowed_next = _______

(g)
if previous == 'P':

allowed_next.remove('M')
if previous == 'M':

allowed_next.remove('P')
return sum([_______ for x in allowed_next])

(h)
slice_types = ['_', 'M', 'P']
return sum([f(1, x, x) for x in slice_types])

i. (1.0 pt) Fill in blank (e).

n == num-slices

ii. (1.0 pt) Fill in blank (f).

 '_' in [first, previous]

first in ['M', 'P']

first in ['M', 'P'] or previous in ['M', 'P']

first != previous

iii. (1.0 pt) Fill in blank (g).

slice_types

 list(slice_types)

[first, previous]

[first, previous, '_']

Exam generated for <EMAILADDRESS> 14

iv. (3.0 pt) Fill in blank (h).

f(n+1, first, x)

Exam generated for <EMAILADDRESS> 15

(d) (8.0 points)

Implement pizzas, which takes a positive integer n and returns a list of all different pizzas that have
mushroom (M), pineapple (P) or no topping (_) slices and do not have M next to P. The check_ends
argument indicates whether to check that the first and last slice are allowed to be next to each other. You
may not call acceptable.

def pizzas(n, check_ends=True):
"""Ways to distribute M and P toppings on a pizza with n slices.

>>> pizzas(1)
['_', 'M', 'P']
>>> pizzas(2)
['__', '_M', '_P', 'M_', 'MM', 'P_', 'PP']
>>> pizzas(3)
['___', '__M', '__P', '_M_', '_MM', '_P_', '_PP',
'M__', 'M_M', 'MM_', 'MMM', 'P__', 'P_P', 'PP_', 'PPP']

>>> '_M_P' in pizzas(4)
True
>>> [pizzas(8)[i*90] for i in range(1, 7)] # A few examples from pizzas(8)
['___PP_M_', '__P__MMM', '_M__P__P', '_MM_M_P_', '_P_M___M', '_PP_P_MM']
"""
if n == 0:

return _______
(i)

recurse = pizzas(n-1, False)

ways = _______
(j)

for y, z in [['M', 'P'], ['P', 'M']]:

_______([y + x for x in recurse if not x or _______])
(k) (l)

ok = lambda x: True

if check_ends:

ok = lambda x: x[0] + x[-1] not in ['MP', 'PM']

return _______ # Must be a call expression
(m)

i. (1.0 pt) Fill in blank (i).

[""]

Exam generated for <EMAILADDRESS> 16

ii. (2.0 pt) Fill in blank (j). IMPORTANT: You may not call pizzas in this blank.

["-" + x for x in recurse]

iii. (1.0 pt) Fill in blank (k).

yield

yield from

return

ways =

ways.append

 ways.extend

iv. (2.0 pt) Fill in blank (l).

x[0] != z

v. (2.0 pt) Fill in blank (m). IMPORTANT: You may only write names, parentheses, and commas.
No [].

list(filter(ok, ways))

Exam generated for <EMAILADDRESS> 17

vi. (0.0 pt) This A+ question is not worth any points. It can only affect your course grade if
you have a high A and might receive an A+. Finish the rest of the exam first!

Here are two examples of calling sum on a list of lists with an optional start argument.

>>> sum([[1, 2], [3]], start=[])
[1, 2, 3]
>>> sum([], start=[])
[]

Fill in the blank of this alternate implementation of pizzas. You may call acceptable and
count_pizzas. If your answer is too long, you can write it on multiple lines.

def pizzas(n):
"""Ways to distribute M and P toppings on a pizza with n slices."""
def g(pizzas):

yield from pizzas
yield from g(sum([[p + s for s in slices] for p in pizzas], start=[]))

slices = ['_', 'M', 'P']
t, u = _______
return [next(t) for _ in u]

filter(lambda p: len(p) == n and acceptable(p), g(slices)),
range(count-pizzas(n))

Exam generated for <EMAILADDRESS> 18

No more questions.

