
CS 61A Structure and Interpretation of Computer Programs
Spring 2021 Midterm 1 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) By writing my name below, I pledge on my honor that I will abide by the rules of this exam and will neither
give nor receive assistance. I understand that doing otherwise would be a disservice to my classmates,
dishonor me, and could result in me failing the class.

Exam generated for <EMAILADDRESS> 3

1. (a) (8.0 points) Flow that Yo-Yo

The following environment diagram was generated by a program:

Click here to open the diagram in a new window

In this series of questions, you’ll fill in the blanks of the program that follows so that its execution matches
the environment diagram. You may want to fill in the blanks in a different order; feel free to answer the
questions in whatever order works for you.

https://i.imgur.com/Q7I9nVs.png

Exam generated for <EMAILADDRESS> 4

def yo_(n, rev):
if n < 0:

return ______
(a)

elif n == 0:
return float("inf")

return n * -2

def _yo(x, y):
if _______:

(b)
y += 1

if _______:
(c)

return lambda a: ______
(d)

return lambda a: lambda b: a + b

flo = yo_(_____, _____)(3)(5)
(e) (f)

(1.0 pt) Which of these could fill in blank (a)?

i.# lambda a: a - 3

lambda a: rev(a, 3)(-1)

rev

yo_(rev)

yo_

 rev(n, -3)

lambda a: yo_(rev)

_yo

ii. (2.0 pt) Which of these could fill in blank (b)? Select all that apply.

� y < 0

� x <= 0

2 x == y

� y <= 0

2 y == 0

� x < 0

Exam generated for <EMAILADDRESS> 5

iii. (2.0 pt) Which of these could fill in blank (c)? Select all that apply.

2 x > 0

2 x == -y

2 y == -x

� x == y

2 y > 0

� x < 0 and y < 0

iv. (1.0 pt) Which of these could fill in blank (d)?

x + y

lambda b: a**x + b**y

a*x + b*y

lambda b: a + b

x * y

lambda b: a*x * b*y

a**x + b**y

 lambda b: a*x + b*y

v. (1.0 pt) Which of these could fill in blank (e)?

-4

_yo

rev

 -2

yo_

-3

vi. (1.0 pt) Which of these could fill in blank (f)?

yo_

rev

lambda x: x

 _yo

lambda x: _yo(x)

flo

Exam generated for <EMAILADDRESS> 6

(8.0 points) Radio Ga-Ga

The following environment diagram was generated by a program:

Click here to open the diagram in a new window

In this series of questions, you’ll fill in the blanks of the program that follows so that its execution matches
the environment diagram. You may want to fill in the blanks in a different order; feel free to answer the
questions in whatever order works for you.

https://i.imgur.com/eC8ubHM.png

Exam generated for <EMAILADDRESS> 7

def ga(station, radio):
if station < 0:

return ______
(a)

elif station == 0:
return float("inf")

return station * -98

def gaa(cee, dee):
if _______:

(b)
dee += 1

if _______:
(c)

return lambda x: ______
(d)

return lambda x: lambda y: x * y

queen = ga(_____, _____)(3)(5)
(e) (f)

(1.0 pt) Which of these could fill in blank (a)?

(b) i.# lambda x: station + x - 3

lambda x: radio(station, 3)(-1)

radio

ga(radio)

ga

 radio(station, -3)

lambda x: ga(gaa)

gaa

ii. (2.0 pt) Which of these could fill in blank (b)? Select all that apply.

� cee < 0

� dee <= 0

2 cee == dee

� cee <= 0

2 cee == 0

� dee < 0

Exam generated for <EMAILADDRESS> 8

iii. (2.0 pt) Which of these could fill in blank (c)? Select all that apply.

2 cee > 0

2 cee == -dee

2 dee == -cee

� cee == dee

2 dee > 0

� cee < 0 and dee < 0

iv. (1.0 pt) Which of these could fill in blank (d)?

cee - dee

 lambda y: x * cee - y * dee

cee * x - dee * x

lambda y: cee + y

cee * dee

lambda y: cee * x * dee * y

cee**x + dee**y

lambda y: x * cee + y * dee

v. (1.0 pt) Which of these could fill in blank (e)?

gaa(-2)

gaa

radio(ga)

 -2

ga

station

vi. (1.0 pt) Which of these could fill in blank (f)?

ga

ga()

lambda n: n

 gaa

gaa()

lambda n: gaa(n)

Exam generated for <EMAILADDRESS> 9

(8.0 points) YipYip Book

The following environment diagram was generated by a program:

Click here to open the diagram in a new window

In this series of questions, you’ll fill in the blanks of the program that follows so that its execution matches
the environment diagram. You may want to fill in the blanks in a different order; feel free to answer the
questions in whatever order works for you.

https://i.imgur.com/izi5Wio.png

Exam generated for <EMAILADDRESS> 10

def yiip(signal, bookbook):
if signal < 0:

return ______
(a)

elif signal == 0:
return float("inf")

return signal * -98

def yip(mup, pet):
if _______:

(b)
mup += 1

if _______:
(c)

return lambda al: ______
(d)

return lambda al: lambda fal: al - fal

yuiop = yiip(_____, _____)(3)(5)
(e) (f)

(1.0 pt) Which of these could fill in blank (a)?

(c) i.# lambda al: signal - al * 3

lambda al: bookbook(signal, 3)(al)

bookbook

yiip(bookbook)

yip

 bookbook(-3, signal)

bookbook(signal + - 3)

ii. (2.0 pt) Which of these could fill in blank (b)? Select all that apply.

� mup < 0

� pet <= 0

2 mup == pet

� mup <= 0

2 pet == 0

� pet < 0

iii. (2.0 pt) Which of these could fill in blank (c)? Select all that apply.

2 mup > 0

2 mup == -pet

2 pet == -mup

� mup == pet

2 pet > 0

� mup <= 0 and pet <= 0

Exam generated for <EMAILADDRESS> 11

iv. (1.0 pt) Which of these could fill in blank (d)?

al - fal**fal

 lambda fal: mup**al + pet**fal

mup * al + pet * fal

lambda fal: mup + pet * fal

mup * pet

lambda fal: mup * al * pet * fal

mup**al + pet**al

lambda fal: al * mup + fal * pet

v. (1.0 pt) Which of these could fill in blank (e)?

yiip(2 * -1)

yiip

bookbook(yip)

 -2

yip

signal - 2

vi. (1.0 pt) Which of these could fill in blank (f)?

 yip

yip()

lambda y: y

yiip

yiip()

lambda y: yiip(y)

-2

Exam generated for <EMAILADDRESS> 12

2. (1.0 points) The Case of the Missing Docstring

Consider the following function and its doctests:

def mystery(l):
"""
>>> mystery([1, 2, 3, 4])
2.5
>>> mystery([2, 4])
3.0
>>> mystery([-5, -2, -9])
0
>>> mystery([])
0
>>> mystery([345])
345.0
"""
s = 0
t = 0
for item in l:

if item > 0:
s += item
t += 1

if t == 0:
return 0

return s/t

(a) Which of the following docstrings would best describe that function?

Returns the average of all elements in L or returns zero if no elements exist.

Returns the average of elements in L with an odd index or returns zero if no such elements exist.

Returns the average of elements in L that are >= 0 or returns zero if no such elements exist.

 Returns the average of positive elements in L or returns zero if no such elements exist.

Exam generated for <EMAILADDRESS> 13

3. (2.0 points) Magical Test Weaver

Consider the following function signature and docstring:

def magic_weave(a, b, c):
"""
Assuming A and B are positive integers with the same number of base-10 digits
and C is a positive integer < 10, return the number whose base-10
representation is the interleaving of digits in A and B (alternating
first one from A then one from B) from all positions where the
two digits in A and B at that position are both >= C. Return 0 if there
are no such positions. Raises an exception if preconditions are not met.
"""

Here is one example of a passing doctest:

>>> magic_weave(345, 987, 3)
394857

(a) Based on the docstring of that function, which of these would be passing doctests? Select all that apply.

2 >>> magic_weave(123, 456, 5)
56

2 >>> magic_weave(234, 456, 5)
3546

� >>> magic_weave(456, 567, 5)
5667

2 >>> magic_weave(0, 0, 5)
0

2 >>> magic_weave(101, 202, 0)
120012

2 >>> magic_weave(567, 899, 10)
586979

Exam generated for <EMAILADDRESS> 14

4. (10.0 points) Domain On the Range

The domain of a function is the set of all possible argument values, while the range of a function is the set of
values that it can return. In this two part-question, you will implement higher-order functions to restrict the
domain and range of other functions.

(a) (4.0 points) restrict_domain

Implement restrict_domain, a function that accepts three parameters (f, low_d, high_d) and returns
a higher-order function that returns the same thing as f when given an argument between low_d and
high_d, inclusive, and otherwise returns float("-inf").

def restrict_domain(f, low_d, high_d):
"""Returns a function that restricts the domain of F,
a function that takes a single argument x.
If x is not between LOW_D and HIGH_D (inclusive),
it returns -Infinity, but otherwise returns F(x).

>>> from math import sqrt
>>> f = restrict_domain(sqrt, 1, 100)
>>> f(25)
5.0
>>> f(-25)
-inf
>>> f(125)
-inf
>>> f(1)
1.0
>>> f(100)
10.0
"""

(a)

(b)

(c)

(d)

return wrapper_method_name

i. (1.0 pt) Fill in blank (a).

def wrapper_method_name(n):

ii. (1.0 pt) Fill in blank (b).

if n < low_d or n > high_d:

Exam generated for <EMAILADDRESS> 15

iii. (1.0 pt) Fill in blank (c).

return float(“-inf”)

iv. (1.0 pt) Fill in blank (d).

return f(n)

Exam generated for <EMAILADDRESS> 16

(b) (5.0 points) restrict_range

Implement restrict_range, a function that accepts three parameters (f, low_r, high_r) and returns a
higher-order function that returns the same thing as f when that result is between low_r and high_r
(inclusive), and otherwise returns float("-inf").

def restrict_range(f, low_r, high_r):
"""Returns a function that restricts the range of F, a function
that takes a single argument X. If the return value of F(X)
is not between LOW_R and HIGH_R (inclusive), it returns -Infinity,
but otherwise returns F(X).

>>> cube = lambda x: x * x * x
>>> f = restrict_range(cube, 1, 1000)
>>> f(1)
1
>>> f(-5)
-inf
>>> f(5)
125
>>> f(10)
1000
>>> f(11)
-inf
"""

(a)

(b)

(c)

(d)

(e)

return wrapper_method_name

i. (1.0 pt) Fill in blank (a).

def wrapper_method_name(n):

ii. (1.0 pt) Fill in blank (b).

result = f(n)

iii. (1.0 pt) Fill in blank (c).

if result < low_r or result > high_r:

Exam generated for <EMAILADDRESS> 17

iv. (1.0 pt) Fill in blank (d).

return float(“-inf”)

v. (1.0 pt) Fill in blank (e).

return result

Exam generated for <EMAILADDRESS> 18

(c) (1.0 points) restrict_both

Now that you have those two functions defined, you’ll implement restrict_both, a higher-order function
that accepts a function f and four numeric arguments (low_d, high_d, low_r, high_r) and returns the
result of applying both restrict_domain and restrict_range on f.

def restrict_both(f, low_d, high_d, low_r, high_r):
"""
Returns a version of F with a domain restricted to (LOW_D, HIGH_D)
and a range restricted to (LOW_R, HIGH_R).

>>> diva = lambda x: (10000 // x) * 9
>>> f = enforce_both(diva, 1, 1000, 100, 999)
>>> f(0)
-inf
>>> f(10000)
-inf
>>> f(200)
450
>>> f(100)
900
>>> f(1000)
-inf
"""

i. Fill in the blank. You may use one line or multiple lines, as long as the solution is correct. Your
solution should use restrict_domain and restrict_range somehow, and assume that those were
implemented correctly.

If you wrote your code in code.cs61a.org, you can paste it in here (do not worry if it seems too indented,
as long as the indentation worked there).

return restrict_range(restrict_domain(f, low_d, high_d), low_r, high_r)

https://code.cs61a.org

Exam generated for <EMAILADDRESS> 19

5. (8.0 points) Digit replacer

The function digit_replacer(predicate, transformer) should return a function that replaces all the digits
in a number where predicate(digit) is true with the result of transformer(digit). The returned function
should accept a single argument, the number n, and return the number with the digits replaced.

Here is the function signature and doctests:

def digit_replacer(predicate, transformer):
"""Returns a function that accepts a single number N (where N > 0) and
returns a number where all digits that return true for PREDICATE(DIGIT)
have been replaced by TRANSFORMER(DIGIT). TRANSFORMER is assumed to always
return a valid digit >= 0 and <= 9.

>>> is_even = lambda d: d % 2 == 0
>>> lt_five = lambda d: d < 5
>>> always_two = lambda d: 2
>>> floor_divide_two = lambda d: d // 2
>>> digit_replacer(is_even, floor_divide_two)(21098)
11094
>>> digit_replacer(lt_five, always_two)(1064592)
2262592
"""

Exam generated for <EMAILADDRESS> 20

(a) (4.0 pt) Use iteration (without recursion) to implement digit_replacer.

Your solution should only use numbers, arithmetic expressions, and booleans. It should not
use strings, lists, or other data types, and will earn 0 points if it does. It will also earn 0
points if it uses recursion, since that’s tested in the second part of this question.

Here’s an approximate structure of a solution, if that helps guide your implementation. It does not
necessarily reflect the exact number of lines or indentation.

def digit_replacer(predicate, transformer):

while ______:

return _____

Remember that you can use code.cs61a.org to try out your code and see if it passes the doctests. You can
then paste the code here. Please include the function signature.

def digit_replacer(predicate, transformer):
def func(n):

new_number = 0
power_of_ten = 0
while n > 0:

digit = n % 10
if predicate(digit):

digit = transformer(digit)
new_number += digit * 10**power_of_ten
power_of_ten += 1
n = n // 10

return new_number
return func

https://code.cs61a.org

Exam generated for <EMAILADDRESS> 21

(b) (4.0 pt) Use a recursive approach to implement digit_replacer.

Your solution should only use numbers, arithmetic expressions, and booleans. It should not
use strings, lists, or other data types, and will earn 0 points if it does. It will also earn 0
points if it does not use recursion, since that was tested in the first part of this question.

Here’s an approximate structure of a solution, if that helps guide your implementation. It does not reflect
the exact number of lines or indentation.

def digit_replacer(predicate, transformer):

return ______

Remember that you can use code.cs61a.org to try out your code and see if it passes the doctests. You can
then paste the code here. Please include the function signature.

def digit_replacer(predicate, transformer):
def func(n):

if n == 0:
return 0

digit = n % 10
if predicate(digit):

digit = transformer(digit)
return func(n // 10) * 10 + digit

return func

https://code.cs61a.org

Exam generated for <EMAILADDRESS> 22

6. (6.0 points) Run checker

Let’s use the term “chain function” to mean a function that takes a single numerical argument and returns
another chain function (so that if h is a chain function, one can call h(3)(4)(1)(2)(0)..., which we’ll call a
“chain of calls.”)

The function run_checker accepts two functions as arguments (condition and result) and returns a chain
function. Each call in a chain starting with the function returned by run_checker first applies condition to
the two previous arguments in the chain and its own argument. If that returns a false value, it prints “No run!”
and otherwise prints the result of result applied to the same three arguments. For the first and second calls in
the chain, the missing arguments are taken to be -1.

def run_checker(condition, result):
"""
Returns a chain function. Each call in a chain that starts with
this returned function prints "No run!" if CONDITION returns a false
value when applied to the previous two arguments and the current argument,
and otherwise prints the result of applying RESULT to these same
three arguments. For calls in the chain where there are fewer than two
preceding calls in the chain, the missing arguments are taken to be -1.

>>> f = run_checker(lambda a, b, c: a > b > c and a >= 10, lambda a, b, c: a*(b+c))
>>> f = f(15)
No run!
>>> f = f(10)
No run!
>>> f = f(5)
225
>>> f = f(2)
70
>>> f = f(1)
No run!
>>> f = f(11)
No run!
>>> f = f(12)
No run!
>>> f = f(10)
No run!
>>> f = f(2)
144
"""
def f(______):

(a)
def g(______):

(b)

(c)

return g
return f(______)
(d)

Exam generated for <EMAILADDRESS> 23

(a) (1.0 pt) Fill in blank (a).

two_ago, one_ago

(b) (1.0 pt) Fill in blank (b).

input

(c) (3.0 pt) Fill in the (c) blanks. You can use more or fewer lines for your solution than the number suggested
by the blanks.

If you use code.cs61a.org to try out your code, you can then paste the code here. Don’t worry if it seems
too indented, as long as the indentation worked there.

if condition(two_ago, one_ago, input):
print(result(two_ago, one_ago, input))

else:
print("No run!")

return f(one_ago, input)

(d) (1.0 pt) Fill in blank (d).

-1, -1

https://code.cs61a.org

Exam generated for <EMAILADDRESS> 24

7. (5.0 points) Measure Twice, Cup Once

The function measure_methods accepts two arguments (total_needed, the total number of grams needed for
a recipe, and cup_sizes, a list of measuring cup sizes available) and returns the number of possible ways to
make exactly total_needed using the cup sizes. The cup_sizes list is measured in grams, sorted from smallest
to largest, and each size is a power of 2. A cup size may be used multiple times in order to come up with
total_needed.

For example, the list of [32, 64, 128] represents these cups:

There are 4 possible ways to make a total of 128 grams from those cups:

Here’s the partially defined function:

def measure_methods(total_needed, cup_sizes):

Exam generated for <EMAILADDRESS> 25

"""Returns the number of ways to make exactly TOTAL_NEEDED with
the given list of CUP_SIZES (sorted by smallest to largest).

>>> measure_methods(128, [32, 64, 128])
4
>>> measure_methods(256, [32, 64, 128])
9
>>> measure_methods(384, [32, 64, 128])
16
>>> measure_methods(256, [16, 32, 64])
25
>>> measure_methods(125, [32, 64, 128])
0
"""
def helper_method_name(______):

(a)

(b)

return helper_method_name(______)
(c)

(a) (1.0 pt) Fill in blank (a).

total_needed, curr_i

Exam generated for <EMAILADDRESS> 26

(b) (3.0 pt) Fill in the (b) blanks. You can use more or fewer lines for your solution than the number suggested
by the blanks, and your code may involve multiple indentation levels.

If you use code.cs61a.org to try out your code, you can then paste the code here. Don’t worry if it seems
too indented, as long as the indentation worked there.

if total_needed == 0:
return 1

if total_needed < 0:
return 0

if len(cup_sizes) <= curr_i:
return 0

without_cup = helper(total_needed, curr_i + 1)
with_cup = helper(total_needed - cup_sizes[curr_i], curr_i)
return without_cup + with_cup

(c) (1.0 pt) Fill in blank (c).

total_needed, 0

https://code.cs61a.org

Exam generated for <EMAILADDRESS> 27

8. (1.0 points) Extra Point!

(a) (1.0 pt) “Baked Century” (nine letters, two words).

High Ranks

Exam generated for <EMAILADDRESS> 28

No more questions.

