
CS 61A Structure and Interpretation of Computer Programs
Spring 2023 Final Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (10.0 points) What Would Python Display?

Assume the following code has been executed. The Link class appears on the midterm 2 study guide.

class Chain(Link):
def add(self, v):

self.rest = Chain(v, self.rest)
return self

gold = Chain(3, Chain(5, Chain(7)))

silver = [1, [2], 3]
bronze = silver[1:]
silver.append(4)
silver[1].append(5)

For each expression below, choose the output displayed when the expression is evaluated. Assume the expressions
are evaluated in order in the same interactive session, and so evaluating an earlier expression may affect the
result of a later one.

(a) (3.0 pt) print(gold.rest.add(1))

<3 1 5 7>

<3 <1> 5 7>

<3 5 1 7>

<3 5 <1> 7>

 <5 1 7>

<5 <1> 7>

None of these

(b) (3.0 pt) print(Chain(2, gold).add(4))

<2 4 3 5 1 7>

(c) (2.0 pt) print(bronze)

[[2, 5], 3]

(d) (2.0 pt) What is the order of growth of the time to run the Chain.add method with respect to the length
of self?

 Constant

Logarithmic

Linear

Quadratic

Exponential

Exam generated for <EMAILADDRESS> 4

2. (5.0 points) Framed

Complete the environment diagram that results from running all of the code below and then answer the questions
that follow. Blanks with no labels have no questions associated with them and are not scored.

(a) (1.0 pt) Fill in blank (a).

 2

4

5

None of these

(b) (1.0 pt) Blanks (b) and (d) have the same value; what is it?

Two functions

 A list containing two functions

A list containing a list of two functions

A list containing two lists that each contain one function

Exam generated for <EMAILADDRESS> 5

(c) (3.0 pt) What three numbers fill in blanks (c), (e), and (f) respectively?

 4, 12, 15

4, 14, 15

4, 15, 15

4, 25, 29

4, 28, 29

4, 36, 36

5, 12, 15

5, 15, 15

5, 25, 29

5, 28, 29

5, 36, 36

Exam generated for <EMAILADDRESS> 6

3. (16.0 points) Trees Get Degrees

(a) (10.0 points)

Implement big_paths, which takes a Tree instance t with number labels. It returns the number of
paths from the root of t to a leaf in which all labels are greater than or equal to the root label.
The Tree class appears on the midterm 2 study guide.

def big_paths(t):
"""Return the number of paths from the root to a leaf in which all labels are
greater than or equal to the root label of t.

>>> t = Tree(5, [Tree(4, [Tree(6), Tree(7)]), Tree(8), Tree(7, [Tree(5), Tree(3)])])
>>> big_paths(t) # 5-8 and 5-7-5
2
"""
def f(s):

if _________:
(a)

return 0

elif _________:
(b)

return 1

else:

return _________
(c)

return _________
(d)

i. (2.0 pt) Fill in blank (a).

s.is_leaf()

t.is_leaf()

t.label >= s.label

s.label >= t.label

 t.label > s.label

s.label > t.label

ii. (2.0 pt) Fill in blank (b).

 s.is_leaf()

t.is_leaf()

t.label >= s.label

s.label >= t.label

t.label > s.label

s.label > t.label

Exam generated for <EMAILADDRESS> 7

iii. (4.0 pt) Fill in blank (c).

sum([f(b) for b in s.branches])

iv. (2.0 pt) Fill in blank (d).

f(s)

 f(t)

f(s, 0)

f(t, 0)

1 + f(s, 0)

1 + f(t, 0)

Exam generated for <EMAILADDRESS> 8

(b) (6.0 points)

Implement gen, a generator function that takes a Tree instance t with number labels and a number n. It
yields a two-element list for every pair of a parent label and child label that sum to n.

def gen(t, n):
"""Yield all pairs of a parent label and child label that sum to n in tree t.

>>> t = Tree(5, [Tree(4, [Tree(6), Tree(7)]), Tree(8), Tree(7, [Tree(5), Tree(3)])])
>>> sorted(gen(t, 10)) # Does not yield [5, 5]; one 5 is the grandparent of the other.
[[4, 6], [7, 3]]
"""
for b in _________:

(e)
if _________ == n:

(f)

(g)
yield from _________

(h)

i. (1.0 pt) Fill in blank (e).

 t.branches

gen(t.branches, n)

map(lambda x: gen(x, n), t.branches)

ii. (1.0 pt) Fill in blank (f).

b.label

t.label

 t.label + b.label

sum([b.label for b in t.branches])

iii. (2.0 pt) Fill in blank (g).

yield [t.label, b.label]

iv. (2.0 pt) Fill in blank (h).

t.branches

b.branches

[[t, b] for b in t.branches]

[[t.label, b.label] for b in t.branches]

gen(t, n)

 gen(b, n)

Exam generated for <EMAILADDRESS> 9

4. (6.0 points) Repark the Car

Definition. A car takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using <> for a car and . for an empty spot. For example '.<>.<><>' represents an empty spot, then two
spots containing a car, then another empty spot, then four spots containing two cars.

Implement cars, which takes non-negative integers k and n. It returns the number of ways to park k cars in n
adjacent parking spots. Treat all cars the same; it does not matter which car is parked in which spot.

def cars(k, n):
"""Return the number of ways to park k cars in n adjacent parking spaces where
each car takes up two spaces.

>>> cars(2, 5) # '<><>.', '<>.<>', '.<><>'
3
>>> cars(3, 6) # '<><><>'
1
>>> cars(1, 7) # '<>.....', '.<>....', etc.
6
"""
if k == 0:

return _________
(a)

if _________:
(b)

return 0

return _________
(c)

(a) (1.0 pt) Fill in blank (a).

0

 1

n

n + 1

(b) (2.0 pt) Fill in blank (b).

k > 0

k < 0

n == 0

n < 1

 n < 2

(c) (3.0 pt) Fill in blank (c).

cars(k, n-1) + cars(k-1, n-2)

Exam generated for <EMAILADDRESS> 10

5. (16.0 points) Pairings

Definition. The pairing of a sequence s is a sequence of pairs containing all of the elements of s in order. A
pair is a two-element list. E.g., the pairing of [1, 3, 5, 6, 4, 2] is [[1, 3], [5, 6], [4, 2]].

(a) (6.0 points)

Implement pair, a function that takes a list s with an even length. It returns the pairing of s.

def pair(s):
"""Return the pairing of an even-length list s as a list of two-element lists.

>>> pair([3, 4, 5, 8, 7, 6])
[[3, 4], [5, 8], [7, 6]]
"""
assert len(s) % 2 == 0
return [_________ for i in _________]

(a) (b)

i. (3.0 pt) Fill in blank (a).

[s[2 * i], s[2 * i + 1]] OR s[2*i:2*i+1]

ii. (1.0 pt) Fill in blank (b). The built-in map function appears on the midterm 2 study guide.

map(lambda x: x // 2, s)

map(lambda x: s // 2, s)

range(len(s // 2))

 range(len(s) // 2)

iii. (2.0 pt) Fill in blank (c) in the implementation of gen_pairs, a generator function that takes an
infinite iterator t. It yields the elements of the pairing of the sequence represented by t.

def naturals(k):
yield k
yield from naturals(k + 1)

def gen_pairs(t):
"""Yield elements of the pairing of an infinite iterable s.

>>> t = gen_pairs(naturals(3)) # naturals(3) contains 3, 4, 5, 6, ...
>>> next(t)
[3, 4]
>>> next(t)
[5, 6]
"""
while True:

yield _________
(c)

[next(t), next(t)]

Exam generated for <EMAILADDRESS> 11

(b) (10.0 points)

Implement pairs, a Scheme procedure that takes a list s with an even length. It returns the pairing of s.
For example, (pairs '(3 4 5 8 7 6)) evaluates to ((3 4) (5 8) (7 6)).

(define (pairs s) (if (null? s) nil (_________ (list (car s) _________) _________)))
(d) (e) (f)

i. (1.0 pt) Fill in blank (d).

append

car

cdr

 cons

if

list

ii. (2.0 pt) Fill in blank (e).

(car (cdr s))

iii. (2.0 pt) Fill in blank (f).

(pairs (cdr (cdr s)))

iv. (2.0 pt) What is the value of the expression (map pairs (pairs '(3 4 5 6)))? The built-in map
procedure appears on the final study guide. Assume pairs is implemented correctly.

(3 4 5 6)

((3 4) (5 6))

(((3 4) (5 6)))

((3 (4)) (5 (6)))

 (((3 4)) ((5 6)))

v. (3.0 pt) Which expressions are passed to scheme_eval when evaluating ((lambda (x) 1) 2)? Check
all that apply.

� ((lambda (x) 1) 2)

� (lambda (x) 1)

2 lambda

2 (x)

2 x

� 1

� 2

Exam generated for <EMAILADDRESS> 12

6. (14.0 points) Log and Count

(a) (6.0 points)

The Log class is constructed with a one-argument function f and has a method call that takes n and
returns f(n). The args attribute of a Log instance for function f is a list containing all n passed to the
call method of any Log instance with the same f.

class Log:
"""Store the arguments passed to a one-argument function in a list called args.
If two logs are created for the same function f, they share a list of args.

>>> f = Log(lambda x: x * x)
>>> f.call(f.call(3))
81
>>> f.args
[3, 9]
>>> g, h = Log(abs), Log(abs)
>>> g.call(h.call(-3))
3
>>> g.args
[-3, 3]
"""
logged = {}
def __init__(self, f):

if f not in self.logged:
_________ = []

(a)
self.f = _________

(b)
self.args = _________

(c)
def call(self, n):

self.args.append(n)
return _________

(d)

i. (3.0 pt) One expression can fill both blanks (a) and (c); what is it?

self.logged[f] or Log.logged[f]

ii. (1.0 pt) Fill in blank (b).

f

iii. (2.0 pt) Fill in blank (d).

Log.call(self, n)

self.call(n)

 self.f(n)

self.f.call(n)

Exam generated for <EMAILADDRESS> 13

(b) (8.0 points)

The Counter class has a method observe that takes an iterable and a method count that takes a value v
and returns the number of times v appears among the elements of all the iterables ever passed to observe.
Finally, the forget method takes no arguments and omits the values of the most recent (not yet forgotten)
call to observe from subsequent calls to count. Assume forget is never called more times than observe.

Hint : The built-in count method of a list returns the count of a value: [3, 4, 3].count(3) is 2.

class Counter:
"""Counts the number of times a value was observed.

>>> c = Counter()
>>> c.observe(map(abs, range(-3, 3))) # observe 3, 2, 1, 0, 1, 2
>>> c.observe(range(-3, 3)) # observe -3, -2, -1, 0, 1, 2
>>> {i: c.count(i) for i in range(-3, 3)}
{-3: 1, -2: 1, -1: 1, 0: 2, 1: 3, 2: 3}
>>> c.forget() # forget range(-3, 3)
>>> {i: c.count(i) for i in range(-3, 3)}
{-3: 0, -2: 0, -1: 0, 0: 1, 1: 2, 2: 2}
>>> c.forget() # forget map(abs, range(-3, 3))
>>> c.count(1)
0
"""
def __init__(self):

self.obs = []
def observe(self, vs):

(e)

def count(self, v):
return _________

(f)
def forget(self):

(g)

i. (3.0 pt) Fill in blank (e).

self.obs.append(list(vs))

ii. (3.0 pt) Fill in blank (f).

sum([s.count(v) for s in self.obs])

iii. (2.0 pt) Fill in blank (g).

obs.pop()

 self.obs.pop()

[obs.pop() for i in range(len(vs))]

[self.obs.pop() for i in range(len(vs))]

Exam generated for <EMAILADDRESS> 14

7. (8.0 points) Room Service

The finals table has columns hall (strings) and course (strings), and has rows for each lecture hall in which
a course is holding its final exam. Each course and each hall value may appear multiple times because a
course may use multiple lecture halls at the same time, and a lecture hall may hold finals for multiple courses at
different times.

The sizes table has columns room (strings) and seats (numbers), and has one row per unique room on campus
containing the number of seats in that room. Each room appears once. All lecture halls are rooms.

Create a table with two columns, course (string) and seats (number), and with one row containing the name
of the course and the total number of seats in final rooms for that course. Only include a row for each
course that uses at least two rooms for its final.

SELECT course, SUM(_________) AS seats FROM _________ GROUP BY _________;
(a) (b) (c)

(a) (1.0 pt) Fill in blank (a).

course

room

 seats

sizes

(b) (4.0 pt) Fill in blank (b). You may include a WHERE or HAVING clause.

finals, sizes WHERE hall=room

(c) (3.0 pt) Fill in blank (c).

hall WHERE seats > 1

hall HAVING seats > 1

hall WHERE sizes > 1

hall HAVING sizes > 1

hall WHERE COUNT(*) > 1

hall HAVING COUNT(*) > 1

course WHERE seats > 1

course HAVING seats > 1

course WHERE sizes > 1

course HAVING sizes > 1

course WHERE COUNT(*) > 1

 course HAVING COUNT(*) > 1

Exam generated for <EMAILADDRESS> 15

8. Group Work

These A+ questions are not worth any points. They can only affect your course grade if you
have a high A and might receive an A+. Finish the rest of the exam first!

Definition. The n-grouping of a list s for positive integer n is a list of n-length lists containing all of the
elements of s in order. The last list may contain fewer than n elements.

E.g., the 3-grouping of [4, 3, 2, 1, 5, 6, 7, 8] is [[4, 3, 2], [1, 5, 6], [7, 8]].

(a) Fill in the blank to implement group, which takes positive integer n and list s. It returns the the n-grouping
of s.

def group(n, s):
"""Return the n-grouping of a list s as a list of n-element lists.

>>> group(2, [3, 4, 5, 6, 7, 8])
[[3, 4], [5, 6], [7, 8]]
>>> group(3, [3, 4, 5, 6, 7, 8])
[[3, 4, 5], [6, 7, 8]]
>>> group(4, [3, 4, 5, 6, 7, 8])
[[3, 4, 5, 6], [7, 8]]
"""
if len(s) <= n:

return [s]
else:

return _________

[s[:n]] + group(n, s[n:])

(b) Fill in the blank to implement group, which takes positive integer n and list s. It returns the the n-grouping
of s.

; (group 3 '(3 4 5 6 7 8)) evaluates to ((3 4 5) (6 7 8))
; (group 4 '(3 4 5 6 7 8)) evaluates to ((3 4 5 6) (7 8))

(define (group n s)
(define (first n s f)

(cond ((null? s) nil)
((= n 0) (cons nil (f s)))
((null? (cdr s)) (list (list (car s))))
(else (let ((t (first (- n 1) (cdr s) f)))

(cons (cons (car s) (car t)) (cdr t))))))
_________)

(first n s (lambda (s) (group n s)))

Exam generated for <EMAILADDRESS> 16

No more questions.

