
CS 61A Structure and Interpretation of Computer Programs
Spring 2023 Midterm 2

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (6.0 points) What Would Python Display?

Assume the following code has been executed.

def chain(s):
return [s[0], s[1:]]

silver = [2, chain([3, 4, 5])]
gold = [silver[0], silver[1].pop()]
silver[0] = 1
platinum = chain(chain([6, 7, 8]))

Write the output displayed by the interactive Python interpreter when each expression below is evaluated.

Hint : Try drawing an environment diagram!

Reminder : s.pop() removes and returns the last item in list s.

(a) (2.0 pt) silver

(b) (2.0 pt) gold

(c) (2.0 pt) platinum

Exam generated for <EMAILADDRESS> 4

2. (10.0 points) Letter Grade

(a) (4.0 points)

Implement the Letter class. A Letter has two instance attributes: contents (a str) and sent (a bool).
Each Letter can only be sent once. The send method prints whether the letter was sent, and if it
was, returns the reply, which is a new Letter instance with the same contents, but in all caps. Hint :
'hi'.upper() evaluates to 'HI'.

class Letter:
"""A letter receives an all-caps reply when sent successfully.

>>> hi = Letter('Hello, World!')
>>> hi.send()
Hello, World! has been sent.
HELLO, WORLD!
>>> hi.send()
Hello, World! was already sent.
>>> Letter('Hey').send().send()
Hey has been sent.
HEY has been sent.
HEY
"""
def __init__(self, contents):

self.contents = contents

(a)
def send(self):

if self.sent:
print(self, 'was already sent.')

else:
print(self, 'has been sent.')

(b)
return _________

(c)
def __repr__(self):

Note: since no __str__ method is defined, the repr and str strings are the same.
return self.contents

i. (1.0 pt) Fill in blank (a).

ii. (1.0 pt) Fill in blank (b)

iii. (2.0 pt) Fill in blank (c)

Exam generated for <EMAILADDRESS> 5

(b) (6.0 points)

Implement the Numbered class. A Numbered letter has a number attribute equal to how many numbered
letters have previously been constructed. This number appears in its repr string. Assume Letter is
implemented correctly.

class Numbered(Letter):
"""A numbered letter has a different repr method that shows its number.

>>> hey = Numbered('Hello, World!')
>>> hey.send()
#0 has been sent.
HELLO, WORLD!
>>> Numbered('Hi!').send()
#1 has been sent.
HI!
>>> hey
#0
"""
number = 0

def __init__(self, contents):
super().__init__(contents)

(d)

(e)

def __repr__(self):
return '#' + _________

(f)

i. (2.0 pt) Fill in blank (d).

Numbered.number = 0

Numbered.number = number

Numbered.number = self.number

self.number = 0

self.number = number

self.number = Numbered.number

ii. (2.0 pt) Fill in blank (e).

iii. (2.0 pt) Fill in blank (f).

Exam generated for <EMAILADDRESS> 6

3. (9.0 points) Prefixes

Definition. A prefix sum of a sequence of numbers is the sum of the first n elements for some positive length n.

(a) (4.0 points)

Implement prefix, which takes a list of numbers s and returns a list of the prefix sums of s in increasing
order of the length of the prefix.

def prefix(s):
"""Return a list of all prefix sums of list s.

>>> prefix([1, 2, 3, 0, 4, 5])
[1, 3, 6, 6, 10, 15]
>>> prefix([2, 2, 2, 0, -5, 5])
[2, 4, 6, 6, 1, 6]
"""
return [_________ for k in _________]

(a) (b)

i. (2.0 pt) Fill in blank (a).

ii. (1.0 pt) Fill in blank (b).

s

[s]

s[1:]

range(s)

range(len(s))

iii. (1.0 pt) What is the order of growth of the time to run this alternate implentation in terms of the
length of s?

Assume that the append method of a list takes just 1 step (constant time).

def prefix(s):
"""Return a list of all prefix sums of list s."""
t = 0
result = []
for x in s:

t = t + x
result.append(t)

return result

Constant

Logarithmic

Linear

Quadratic

Exponential

Exam generated for <EMAILADDRESS> 7

(b) (5.0 points)

Implement tens, which takes a non-empty linked list of numbers s represented as a Link instance. It
prints all of the prefix sums of s that are multiples of 10 in increasing order of the length of the prefix.

The Link class appears on the midterm 2 study guide.

def tens(s):
"""Print all prefix sums of Link s that are multiples of ten.

>>> tens(Link(3, Link(9, Link(8, Link(10, Link(0, Link(14, Link(6))))))))
20
30
30
50
"""

def f(suffix, total):

if total % 10 == 0:

print(total)

if _________:
(d)

(e)

(f)

i. (1.0 pt) Fill in blank (d).

s is not Link.empty

s.rest is not Link.empty

s.rest.rest is not Link.empty

suffix is not Link.empty

suffix.rest is not Link.empty

suffix.rest.rest is not Link.empty

ii. (2.0 pt) Fill in blank (e).

iii. (2.0 pt) Fill in blank (f).

Exam generated for <EMAILADDRESS> 8

4. (10.0 points) Tree Trimming

(a) (7.0 points)

Implement exclude, which takes a Tree instance t and a value x. It returns a Tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a node in the result
is its nearest ancestor node that is not excluded. The input t must not be modified.

The Tree class appears on the midterm 2 study guide.

def exclude(t, x):
"""Return a Tree with the non-root nodes of t whose labels are not equal to x.

>>> t = Tree(1, [Tree(2, [Tree(2), Tree(3)]), Tree(4, [Tree(1)])])
>>> exclude(t, 2)
Tree(1, [Tree(3), Tree(4, [Tree(1)])])
>>> t # t is not changed
Tree(1, [Tree(2, [Tree(2), Tree(3)]), Tree(4, [Tree(1)])])
>>> exclude(t, 1) # The root node cannot be excluded
Tree(1, [Tree(2, [Tree(2), Tree(3)]), Tree(4)])
"""

filtered_branches = map(lambda y: _________, t.branches)
(a)

bs = []

for b in filtered_branches:

if _________:
(b)

bs._________(_________)
(c) (d)

else:

bs.append(b)

return Tree(t.label, bs)

i. (2.0 pt) Fill in blank (a).

ii. (2.0 pt) Fill in blank (b).

Exam generated for <EMAILADDRESS> 9

iii. (1.0 pt) Fill in blank (c).

remove

pop

append

extend

iv. (2.0 pt) Fill in blank (d).

b

b.branches

exclude(b, x)

Tree(b.label, [exclude(y, x) for y in b.branches])

Exam generated for <EMAILADDRESS> 10

(b) (3.0 points)

Implement remove, which takes a Tree instance t and a value x. It removes all non-root nodes from t
that have a label equal to x, then returns t. The parent of a node in t is its nearest ancestor that is not
removed. Assume that exclude is implemented correctly.

def remove(t, x):
"""Remove all non-root nodes labeled x from t and return t.

>>> t = Tree(1, [Tree(2, [Tree(2), Tree(3)]), Tree(4)])
>>> remove(t, 2)
Tree(1, [Tree(3), Tree(4)])
>>> remove(t, 3) # t was changed, so both 2 and 3 are now removed.
Tree(1, [Tree(4)])
"""

(e)

return t

i. (3.0 pt) Fill in blank (e).

Exam generated for <EMAILADDRESS> 11

5. (10.0 points) Parking

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car takes up 2 adjacent
parking spots. A string of length n can represent n adjacent parking spots using % for a motorcycle, <> for a
car, and . for an empty spot. For example '.%%.<><>' represents an empty spot, then two spots containing
motorcycles, then another empty spot, then four spots containing two cars.

Thanks to the Berkeley Math Circle for introducing this question.

(a) (4.0 points)

Implement count_park, which returns the number of ways that vehicles can be parked in n adjacent
parking spots for positive integer n. Some or all spots can be empty.

def count_park(n):
"""Count the ways to park cars and motorcycles in n adjacent spots.

>>> count_park(1) # '.' or '%'
2
>>> count_park(2) # '..', '.%', '%.', '%%', or '<>'
5
>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
29
"""

if n < 0:

return 0

if n == 0:

return _________
(a)

return _________
(b)

i. (1.0 pt) Fill in blank (a).

ii. (3.0 pt) Fill in blank (b).

Exam generated for <EMAILADDRESS> 12

(b) (6.0 points)

Implement park, a generator function that takes a non-negative integer n. It yields (in any order) all
possible strings representing n adjacent parking spots.

def park(n):
"""Yield the ways to park cars and motorcycles in n adjacent spots.

>>> sorted(park(1))
['%', '.']
>>> sorted(park(2))
['%%', '%.', '.%', '..', '<>']
>>> sorted(park(3))
['%%%', '%%.', '%.%', '%..', '%<>', '.%%', '.%.', '..%', '...', '.<>', '<>%', '<>.']
>>> len(list(park(4)))
29
"""
if n == 0:

yield ''
elif n > 0:

for s in park(n-1):

(c)

(d)

for s in _________:
(e)

(f)

i. (3.0 pt) Fill in blanks (c) and (d) with two lines of code. You may not use yield from.

ii. (1.0 pt) Fill in blank (e).

iii. (2.0 pt) Fill in blank (f).

Exam generated for <EMAILADDRESS> 13

(c) This A+ question is not worth any points. It can only affect your course grade if you have
a high A and might receive an A+. Finish the rest of the exam first!

Implement pack, a generator function that takes a non-negative integer n. It yields (in any order) all
possible strings representing n adjacent parking spots in which an equal number of cars and motorcycles
are parked, no motorcycle is adjacent to a car, and no empty spot is adjacent to another empty spot.

def pack(n):
"""Yield the ways to park an equal number of cars and motorcycles
in n adjacent spots with no motorcycle adjacent to a car and no
empty spot adjacent to another empty spot.

>>> sorted(pack(4))
['%.<>', '<>.%']
>>> sorted(pack(7))
['%%.<><>', '<><>.%%']
>>> sorted(pack(8))
['%%.<>.<>', '%%.<><>.', '%.%.<><>', '%.<><>.%', '.%%.<><>',
'.<><>.%%', '<>.%%.<>', '<>.<>.%%', '<><>.%%.', '<><>.%.%']

"""
def f(n, k):

if n == 0 and k == 0:
yield ''

elif n > 0:
yield from g(n-1, k-1, '<', '%')
yield from g(n-1, k, '.', '.')
yield from g(n-2, k+1, '%', '<>')

def g(n, k, no, yes):

yield from _________

yield from f(n, 0)

i. Fill in the blank.

Exam generated for <EMAILADDRESS> 14

No more questions.

