
CS 61A Structure and Interpretation of Computer Programs
Spring 2024 Midterm 1 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) What Would Python Display?

Assume the following code has been executed already.

one = 1

def choose(one):
if big(one):

print('A')
if huge(one):

print('B')
elif big(one) or huge(one):

print('C')
if big(one) or print('D'):

print('E')
else:

print('F')

big = lambda x: x >= one
huge = lambda x: x > one

def which():
one = 3
def this():

return one
return one + 1

return this
one = 4

(a) (6.0 pt) Which lines are displayed by the interactive Python interpreter after evaluating choose(one +
one)? Select all that apply.

� A

� B

2 C

2 D

� E

2 None

2 None of the above

(b) (2.0 pt) What is displayed by the interactive Python interpreter after evaluating which()()?

2

 3

4

5

A function

An error occurs before anything is displayed

Exam generated for <EMAILADDRESS> 4

2. (8.0 points) Silence of the Lambda

Complete the environment diagram below and then answer the questions that follow. There is one question for
each labeled blank in the diagram. The blanks with no labels have no questions associated with them and are
not scored. If a blank contains an arrow to a function, write the function as it would appear in the diagram.

(a) (2.0 pt) Fill in blank (a). The line number has been omitted for simplicity.

-1

1

-10

func lambda(n) [parent = Global]

func lambda(k) [parent = Global]

func lambda(n) [parent = f1]

 func lambda(k) [parent = f1]

(b) (1.0 pt) Fill in blank (b).

 -1

2

3

10

Exam generated for <EMAILADDRESS> 5

(c) (1.0 pt) Fill in blank (c).

-3

-2

20

30

 None

(d) (1.0 pt) Fill in blank (d).

-1

2

3

 10

(e) (1.0 pt) Fill in blank (e).

Global

 f1

f2

f3

(f) (2.0 pt) What is printed by the call to print on line 6?

-3

 -2

20

30

None

Exam generated for <EMAILADDRESS> 6

3. (8.0 points) Nearly Square

Implement near_square, which takes positive integer n and non-negative integer k. It returns the largest integer
less than or equal to n which is the product of two positive integers that differ by k or less. You may use solve,
which is provided.

def near_square(n, k):
"""Return the largest integer that is less than or equal to n and
equals a * b for some positive integers a and b where abs(a - b) <= k.

>>> near_square(125, 0) # 11 * 11 = 121 and abs(11 - 11) = 0
121
>>> near_square(120, 3) # 10 * 12 = 120 and abs(10 - 12) = 2
120
>>> near_square(120, 1) # 10 * 11 = 110 and abs(10 - 11) = 1
110
"""
while True:

gap = k

while _______:
(a)

x = _______
(b)

if _______: # Check if x is a whole number
(c)

return _______
(d)

(e)

(f)

def solve(b, c):
"""Returns the largest x for which x * (x + b) = c

>>> solve(2, 120) # x=10 solves x * (x + 2) = 120
10.0
>>> solve(2, 121) # x=10.045... solves x * (x + 2) = 121
10.045361017187261
"""
return (b*b/4 + c) ** 0.5 - b/2

(a) (2.0 pt) Fill in blank (a). Select all that apply.

2 gap

2 gap != 0

2 gap > 0

� gap >= 0

Exam generated for <EMAILADDRESS> 7

(b) (2.0 pt) Fill in blank (b).

solve(gap, n)

(c) (1.0 pt) Fill in blank (c). The round function is demonstrated on the Midterm 1 Study Guide (page 2
righthand side).

round(x)

x % 10

 x == round(x)

x == x % 10

(d) (1.0 pt) Fill in blank (d).

 n

k

gap

True

(e) (1.0 pt) Fill in blank (e).

n = n - 1

n = k - 1

n = n - k

 gap = gap - 1

gap = k - 1

k = k - 1

(f) (1.0 pt) Fill in blank (f).

 n = n - 1

n = k - 1

n = n - k

gap = gap - 1

gap = k - 1

k = k - 1

Exam generated for <EMAILADDRESS> 8

4. (16.0 points) Nice Dice

A dice integer is a positive integer whose digits are all greater than or equal to 1 and all less than or equal to
6.

(a) (8.0 points)

Implement streak, which takes a positive integer n. It returns True if n is a dice integer whose digits
are all the same and False otherwise.

def streak(n):
"""Return whether positive n is a dice integer in which all the digits are the same.

>>> streak(22222)
True
>>> streak(4)
True
>>> streak(22322) # 2 and 3 are different digits.
False
>>> streak(99999) # 9 is not allowed in a dice integer.
False
"""
d = n % 10

if _______:
(a)

return False

while n:

if _______:
(b)

(c)

n = n // 10

return _______
(d)

i. (2.0 pt) Fill in blank (a).

d < 1 and d > 6

 d < 1 or d > 6

n < 1 and n > 6

n < 1 or n > 6

min(n) < 1 and max(n) > 6

min(n) < 1 or max(n) > 6

The loop checks the remaining digits.

Exam generated for <EMAILADDRESS> 9

ii. (2.0 pt) Fill in blank (b).

‘d != n % 10

iii. (1.0 pt) Fill in blank (c).

d = n % 10

d = (n // 10) % 10

result = False

 return False

iv. (1.0 pt) Fill in blank (d).

 True

result

d == n

d == n % 10

Exam generated for <EMAILADDRESS> 10

v. (2.0 pt) Fill in the blank of changes, which takes a dice number n. It returns the number of digits of
n that are different from the digit to their left.

def changes(n):
"""Return the number of adjacent digits that are different in dice number n.

>>> changes(22222)
0
>>> changes(222255)
1
>>> changes(22322)
2
>>> changes(22366666622)
3
>>> changes(52431)
4
"""
count = 0
while n >= 10:

if _______:

count = count + 1
n = n // 10

return count

n != n % 100

n != n // 10

n != (n // 10) % 10

n != (n // 10) % 100

n % 10 != n % 100

n % 10 != n // 10

 n % 10 != (n // 10) % 10

n % 10 != (n // 10) % 100

Exam generated for <EMAILADDRESS> 11

(b) (2.0 pt) Fill in the blank of count_if, which takes a one-argument function f. It returns a function that
takes a positive integer n and returns the count of its digits for which f returns a true value.

def count_if(f):
"""Return a function that takes a positive integer n and returns
the count of its digits for which f returns a true value.

>>> is_three = lambda d: d == 3
>>> count_threes = count_if(is_three) # count_threes returns the number of threes in n
>>> count_threes(431663334231) # 3 appears 5 times
5
"""
def g(n):

count = 0
while n:

if _______:
count += 1

n = n // 10
return count

return g

f(n % 10)

(c) (2.0 pt) Fill in the blank of count_at_least, which takes a positive integer k. It returns a function that
takes a positive integer n and returns the count of its digits that are greater than or equal to k.

def count_at_least(k):
"""Return a function that returns how many of the digits of its argument are at least k.

>>> above_3 = count_at_least(3) # above_3 returns the # of digits greater than or equal to 3
>>> above_3(431663334231)
9
"""
return count_if(_______)

lambda: n % 10 >= k

lambda: n >= k

lambda: d >= k

lambda: d >= n % 10

lambda d: n % 10 >= k

lambda d: n >= k

 lambda d: d >= k

lambda d: d >= n % 10

lambda d: lambda k: n % 10 >= k

lambda d: lambda k: n >= k

lambda d: lambda k: d >= k

lambda d: lambda k: d >= n % 10

Exam generated for <EMAILADDRESS> 12

(d) (4.0 pt) Fill in the blank of times, which takes a non-negative integer k, a positive integer n, and a digit
d. It returns True if n contains digit d exactly k times and False otherwise. You may use count_if.

def times(k, n, d):
"""Returns whether n contains digit d exactly k times.

>>> times(3, 6132344561, 4) # 4 only appears 2 times
False
>>> times(3, 61323445614, 4) # 4 appears exactly 3 times
True
"""
return _______

k == count_if(lambda i: i == d)(n)

(e) (0.0 pt) This A+ question is not worth any points. It can only affect your course grade if
you have a high A and might receive an A+. Finish the rest of the exam first!

Fill in the blank to implement streak using count_if. You may not write else or * or **.

The expression is long, so you may use multiple lines to write it.

def streak(n):
"""Return whether positive n is a dice integer in which all the digits are the same.

>>> streak(22222)
True
>>> streak(4)
True
>>> streak(22322) # 2 and 3 are different digits.
False
>>> streak(99999) # 9 is not allowed in a dice integer.
False
"""
return ______

count_if(lambda d: True)(n) == count_if(lambda d: d > 0 and d < 7 and d
== n % 10)(n)

Exam generated for <EMAILADDRESS> 13

No more questions.

