
CS 61A Structure and Interpretation of Computer Programs
Spring 2025 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (5.0 points) What Would Python Display?

Assume the following code has been executed.

nest = [[[x, y] for x in range(y, 3)] for y in range(1, 3)]

def dip(s):
if s:

for x in dip(s[1:]):
yield x + 1

yield s[0]

Write the output that would be displayed by printing the result of each expression. If an error occurs, write
ERROR.

(a) (1.0 pt) next(map(lambda x: 6 // (x - 2), range(5)))

(b) (2.0 pt) nest[1]

(c) (2.0 pt) list(dip([3, 4, 5]))

Exam generated for <EMAILADDRESS> 4

2. (7.0 points) Square Bears on Stairs

Complete the environment diagram to answer the following questions. Only the questions will be scored.

(a) (2.0 pt) What is displayed by print(where(1)) on line 8?

(b) (3.0 pt) What is displayed by print(stairs[1]) on line 9?

(c) (1.0 pt) What is the order of growth of the time it takes to evaluate skipsum(s) in terms of the length of
list s?

def skipsum(s):
if len(s) <= 2:

return max(s + [0])
return max(s[0] + skipsum(s[2:]), s[1] + skipsum(s[3:]))

logarithmic

linear

quadratic

exponential

(d) (1.0 pt)What would be the order of growth of the time to evaluate skipsum(s) if skipsum were memoized?

logarithmic

linear

quadratic

exponential

Exam generated for <EMAILADDRESS> 5

3. (6.0 points) Swap Meet

Implement swap, which takes a list s and non-negative numbers t and u. It returns a list with the same elements
as s, but with the elements at indices t and u swapped. Hint: (a + b) - a == b for any integers a and b.

def swap(s, t, u):
"""Return a new list like s but with the elements at positions t and u swapped.
>>> letters = ['p', 'q', 'r', 's']
>>> swap(letters, 0, 2)
['r', 'q', 'p', 's']
>>> letters
['p', 'q', 'r', 's']
"""
assert min(t, u) >= 0 and max(t, u) < len(s)
def select(i):

if _______:
(a)

return _______
(b)

else:
return _______

(c)
return [select(x) for x in _______]

(d)

(a) (2.0 pt) Fill in blank (a). Select all that apply.

2 i == t or u

2 i == t and u

2 i == t or i == u

2 i == t and i == u

2 i in [t, u]

(b) (2.0 pt) Fill in blank (b).

(c) (1.0 pt) Fill in blank (c).

i

x

s[i]

s[x]

(d) (1.0 pt) Fill in blank (d).

s

s[t:u]

range(s)

range(len(s))

Exam generated for <EMAILADDRESS> 6

4. (11.0 points) Tree Spree

(a) (5.0 points)

Implement offspring, which takes a Tree instance t and a value x. It returns a list of the labels of the
nodes in t that are children of nodes labeled x. The returned list can have any order.

The Tree class appears on the left side of Page 2 of the Midterm 2 study guide.

def offspring(t, x):
"""List the labels of all nodes whose parents are labeled x.

>>> a = Tree(5, [Tree(6, [Tree(7), Tree(8)]), Tree(9, [Tree(10)])])
>>> sorted(offspring(a, 6))
[7, 8]
>>> b = Tree(3, [Tree(5, [Tree(3, [Tree(3), Tree(5)])]), Tree(7, [Tree(3)])])
>>> sorted(offspring(b, 3))
[3, 5, 5, 7]
"""
result = []
for b in t.branches:

if _______:
(a)

result.append(_______)
(b)

result._______
(c)

return result

i. (1.0 pt) Fill in blank (a).

t.label == x

b.label == x

t.label == x.label

b.label == x.label

ii. (1.0 pt) Fill in blank (b).

t

t.label

b

b.label

iii. (3.0 pt) Fill in blank (c).

Exam generated for <EMAILADDRESS> 7

(b) (6.0 points)

Implement graft, which takes two Tree instances t and u and a value x. All labels in t and u are unique,
and x is a label in t. It mutates t, replacing the node labeled x with u, so that u is now a node in t, and
the node labeled x along with all of its descendants are removed from t.

Hint: The index method of a list takes a value x and returns the index of the first occurence of x in the
list. ['a', 'b', 'c'].index('b') evaluates to 1.

def graft(t, u, x):
"""Mutate Tree t so that the node rooted at label x is replaced by Tree u.

>>> lemon = Tree(13, [Tree(14), Tree(15)])
>>> lime = Tree(1, [Tree(2, [Tree(3), Tree(4, [Tree(5)])]), Tree(6, [Tree(7)])])
>>> graft(lime, lemon, 4)
>>> lime
Tree(1, [Tree(2, [Tree(3), Tree(13, [Tree(14), Tree(15)])]), Tree(6, [Tree(7)])])
>>> lime.branches[0].branches[1] is lemon
True
"""
s = _______

(d)
if x in s:

(e)

else:
for b in t.branches:

(f)

i. (1.0 pt) Fill in blank (d).

[t.label]

t.branches

[b.label for b in t.branches]

[graft(b, u, x) for b in t.branches]

ii. (4.0 pt) Fill in blank (e).

iii. (1.0 pt) Fill in blank (f).

graft(b, u, x)

return graft(b, u, x)

b = u

b.label = u.label

Exam generated for <EMAILADDRESS> 8

5. (12.0 points) Row, Row, Row Your Boat

Each Boat has a number. Each Rower has a name. The add method of a Boat takes a list of Rower instances
called folks. Then, for each Rower in folks, if they can sit in the Boat, they are assigned the lowest
non-negative seat number that hasn’t yet been assigned for that boat (starting at 0). The seat number for each
Rower is stored in the where attribute of their boat: a dictionary whose keys are Rower instances and whose
values are non-negative integers. The sit method of a Rower returns True if that Rower doesn’t already have a
seat, and prints a message otherwise.

A Captain is a Rower that won’t sit in a boat with another Captain. The sit method of the Captain class
first checks for another captain in the boat and prints a message and returns None if there is one, then checks
that the Captain doesn’t already have a seat in a boat (and prints a message and returns None if they do), and
finally claims the boat so that no other captain will sit there (and returns True).

class Boat:
"""A boat full of rowers.
>>> bella, finn, hank = Rower('Bella'), Captain('Finn'), Captain('Hank')
>>> Boat(5).add([Rower('Ace'), bella, Rower('Charlie'), finn, Rower('Ginger')])
>>> Boat(7).add([Rower('Daisy'), finn, hank, bella, Captain('Ellie')])
Finn in Boat 5 Seat 3 already has a seat!
Bella in Boat 5 Seat 1 already has a seat!
Ellie won't sit. Hank is captain of Boat 7!
>>> print(hank)
Hank in Boat 7 Seat 1
"""
def __init__(self, number):

self.number = number # The number of the boat
self.where = {} # A dict from Rowers to seat numbers

def add(self, folks):
for p in folks:

if p.sit(_______):
(a)

_______ # Assign them the lowest available seat number
class Rower: (b)

"""A Rower in a Boat."""
def __init__(self, name):

self.name = name
self.boat = None

def sit(self, boat):
if self.boat is None:

self.boat = boat
return True

print(self, 'already has a seat!')
def __str__(self):

return f'{self.name} in Boat {self.boat.number} Seat { _______ }'
class Captain(Rower): (c)

"""A captain will not sit in a boat that already has a captain."""
claimed = {}
def sit(self, boat):

if boat not in Captain.claimed:
if _______ :

(d)
_______ # Claim the boat

(e)
return True

else:
print(f"{self.name} won't sit. { _______ } is captain of Boat {boat.number}!")

Exam generated for <EMAILADDRESS> 9

(f)

(a) (1.0 pt) Fill in blank (a).

self

self.number

Boat

Boat.number

(b) (3.0 pt) Fill in blank (b).

(c) (3.0 pt) Fill in blank (c), which evaluates to the seat number assigned to the Rower when they sat.

(d) (2.0 pt) Fill in blank (d). Select all that apply.

2 self.boat is not None

2 super().sit(boat)

2 super(self).sit(boat)

2 super().sit(self, boat)

2 Rower.sit(boat)

2 self.Rower.sit(boat)

2 Rower.sit(self, boat)

(e) (1.0 pt) Fill in blank (e).

claimed = True

self.claimed = True

claimed[boat] = self

self.claimed[boat] = self

boat.captain = self

boat.captain = True

(f) (2.0 pt) Fill in blank (f), which evalautes to the name of the captain that claimed this boat.

Exam generated for <EMAILADDRESS> 10

6. (18.0 points) Arithmetic

(a) (8.0 points)

Implement can_equal, which takes a string digits containing a sequence of digits from 1 to 9 (no zeros)
and an integer n. It returns True if there is a way to add zero or more + and - symbols to digits to form
an expression that evaluates to n.

Hint: The built-in int can be called on a string to convert it to an integer. For example, int('-42')
returns -42.

def can_equal(digits, n):
"""Whether adding + and - symbols to digits can form an expression that evaluates to n.

>>> can_equal('45332', 14) # 45-33+2 = 14
True
>>> can_equal('45332', 527) # -4+533-2 = 527
True
>>> can_equal('45332', 38) # 4+5-3+32 = 38
True
>>> can_equal('45332', 287) # -45+332 = 287
True
>>> can_equal('45332', -287) # 45-332 = -287
True
>>> can_equal('45332', 45) # Impossible
False
>>> can_equal('45332', 39) # Impossible
False
"""
if _______ :

(a)

return True

for k in range(1, _______):
(b)

if _______ ([can_equal(_______ , n - sign * _______) for sign in [1, -1]]):
(c) (d) (e)

return True

return _______
(f)

i. (1.0 pt) Fill in blank (a).

digits == ''

n == 0

digits == '' and n == 0

digits == '' or n == 0

Exam generated for <EMAILADDRESS> 11

ii. (1.0 pt) Fill in blank (b).

10

int(digits)

int(digits) + 1

len(digits)

len(digits) + 1

iii. (1.0 pt) Fill in blank (c).

any

all

list

min

iter

iv. (2.0 pt) Fill in blank (d).

v. (2.0 pt) Fill in blank (e).

vi. (1.0 pt) Fill in blank (f).

True

False

n == 0

n in digits

str(n) in digits

Exam generated for <EMAILADDRESS> 12

(b) (4.0 points)

The Link class appears on the left side of Page 2 of the Midterm 2 study guide.

i. (2.0 pt) Fill in blank (g) to implement join_link, a function that takes a linked list of strings s. It
returns a string that contains all of the characters in all of the strings in s in order.

def join_link(s):
"""Return a string that concatenates all of the strings in linked list s.

>>> join_link(Link('cs', Link('6', Link('1a'))))
'cs61a'
"""
if s is Link.empty:

return ''
return _______

(g)

s + str(s.rest)

s + join_link(s.rest)

s + join_link(s.rest.first)

s.first + str(s.rest)

s.first + join_link(s.rest)

s.first + join_link(s.rest.first)

ii. (2.0 pt) Fill in blank (h) to implement to_link, a function that takes a finite iterator t. It returns a
linked list containing all of the values that t iterates over.

def to_link(t):
"""Return a linked list containing the values in iterator t.

>>> to_link(iter([3, 5, 7, 9]))
Link(3, Link(5, Link(7, Link(9))))
"""
try:

return _______
(h)

except StopIteration:
return Link.empty

Link(t, to_link(t))

Link(t, to_link(t.rest))

Link(t, to_link(t).rest)

Link(t, to_link(next(t)))

Link(next(t), to_link(t))

Link(next(t), to_link(t.rest))

Link(next(t), to_link(t).rest)

Link(next(t), to_link(next(t)))

Exam generated for <EMAILADDRESS> 13

(c) (6.0 points)

Implement terms, a generator function that takes a string digits containing digits from 1 to 9 and an
integer n for which can_equal(digits, n) returns True. It yields integers whose digits are the contents
of digits and that sum to n. If there is more than one such sequence of numbers, yield any one of them.
You may call can_equal, join_link, and to_link.

def terms(digits, n):
"""Yield the numbers in an expression that demonstrates can_equal(digits, n) is True.

>>> list(terms('45332', 38)) # 4+5-3+32 = 38
[4, 5, -3, 32]
>>> list(terms('45332', 527)) # -4+533-2 = 527
[-4, 533, -2]
"""
assert can_equal(digits, n)
digits = to_link(iter(digits)) # Create a linked list over one-digit strings
first = 0
while digits:

first = _______
(i)

rest = _______
(j)

if can_equal(rest, n - first):
yield first
first, n = 0, n - first

elif can_equal(rest, n + first):

(k)
first, n = 0, n + first

digits = digits.rest

i. (3.0 pt) Fill in blank (i).

ii. (2.0 pt) Fill in blank (j).

iii. (1.0 pt) Fill in blank (k).

n = -n

yield first

yield -first

yield n-first

yield from terms(digits, -n)

Exam generated for <EMAILADDRESS> 14

7. (10.0 points) Finally Some Scheme

(a) (6.0 points)

Implement except-last, a procedure that takes a list s and returns a list with all of the elements of s
except the last one. If there is no last element because s is empty, return nil.

;;; Return all but the last element of s in a list.
;;;
;;; scm> (except-last nil)
;;; ()
;;; scm> (except-last '(2))
;;; ()
;;; scm> (except-last '(2 3 4 5))
;;; (2 3 4)
;;; scm> (except-last '(2 (3 3) 4 (5 6)))
;;; (2 (3 3) 4)

(define (except-last s)
(if _______ nil

(a)
(cons (car s) _______)))

(b)

i. (2.0 pt) Fill in blank (a).

ii. (1.0 pt) Fill in blank (b).

s

(cdr s)

(cdr (cdr s))

(except-last s)

(except-last (cdr s))

(except-last (cdr (cdr s)))

iii. (3.0 pt) Fill in blank (c) below to implement except-last-k, which takes a non-negative integer k
and a list s. It returns a list with all of the elements of s except the last k elements. If there are k or
fewer elements, return nil. You may call except-last.

(define (except-last-k k s)
(if (= k 0) s _______))

(c)

Exam generated for <EMAILADDRESS> 15

(b) (4.0 points)

Assume the following code had been evaluated and that except-last is implemented correctly.

(define-macro (mystery expr other)
(append (except-last expr) (list other)))

What would Scheme display as the value of the following expression? Write ERROR if an error occurs.

i. (2.0 pt) (cons 2 (mystery (cons 3 nil) '(4)))

(2 4)

(2 (4))

(2 3 4)

(2 3 (4))

(2 (3 4))

(2 (3 (4)))

ERROR

ii. (2.0 pt) (mystery (* (+ 2 3) (+ 4 (/ 2 0))) (- 5 2))

3

5

8

15

20

35

ERROR

Exam generated for <EMAILADDRESS> 16

8. (6.0 points) WHERE Brainrot=’Italian’

The who table has one row per character with its name (a unique string), size (a number), and kind (a string).
The kinds table has one row per kind that shows whether it’s living ('yes' or 'no') and what kind it is (a
unique string).

(a) (3.0 pt) Fill in blank (a) to create a one-row, one-column table containing the total size of all characters
that have a living kind.

SELECT SUM(size) AS total FROM _______ ;
(a)

who JOIN kinds ON kind=what WHERE kind=living

who JOIN kinds ON kind=what WHERE kind='living'

who JOIN kinds ON kind=what WHERE living=yes

who JOIN kinds ON kind=what WHERE living='yes'

who JOIN kinds ON kind=kinds WHERE kind=living

who JOIN kinds ON kind=kinds WHERE kind='living'

who JOIN kinds ON kind=kinds WHERE living=yes

who JOIN kinds ON kind=kinds WHERE living='yes'

(b) (3.0 pt) Two characters can battle if the smaller one is at least half the size of the larger one (or they are
the same size). Fill in blank (b) to create a table with one row per character that has two columns: the
character’s name and the number of other characters it can battle. For example, lirili larila can only
battle tralalero tralala because all other characters are too small. Do not include rows for characters
that cannot battle any other characters. Select all that apply.

SELECT a.name,COUNT(*) FROM who AS a, who AS b WHERE a.name!=b.name AND _______ GROUP BY a.name;
(b)

2 a.size >= b.size * 0.5

2 b.size >= a.size * 0.5

2 a.size >= b.size * 0.5 OR b.size >= a.size * 0.5

2 a.size >= b.size * 0.5 AND b.size >= a.size * 0.5

2 MIN(a.size, b.size) >= b.size * 0.5

2 a.size >= MAX(a.size, b.size) * 0.5

2 MIN(a.size, b.size) >= MAX(a.size, b.size) * 0.5

2 MIN(a.size / b.size, b.size / a.size) >= 0.5

2 MAX(a.size / b.size, b.size / a.size) >= 0.5

Exam generated for <EMAILADDRESS> 17

9. (0.0 points) A+

These two A+ questions are not worth any points. They can only affect your course grade if you
have a high A and might receive an A+. Finish the rest of the exam first!

(a) (0.0 pt) Fill in the blank to implement swap, which takes a list s and non-negative numbers t and u. It
returns a list with the same elements as s, but with the elements at indices t and u swapped. Do not
write if, and, or, or lambda. You may not call functions from elsewhere on the exam. Hint: Try using a
dictionary.

def swap(s, t, u):
"""Return a new list like s but with the elements at positions t and u swapped.
>>> letters = ['p', 'q', 'r', 's']
>>> swap(letters, 0, 2)
['r', 'q', 'p', 's']
>>> letters
['p', 'q', 'r', 's']
"""
return [_______ for x in range(len(s))]

Exam generated for <EMAILADDRESS> 18

(b) (0.0 pt) Fill in the blank to implement equal, which takes a string digits containing digits from 1 to 9 and
an integer n for which can_equal(digits, n) returns True. It returns a string s containing all of digits
and zero or more + or - symbols such that eval(s) == n. You may call eval and can_equal. If there is
more than one possible return value, return any of them. Important: For credit, your implementation
must ensure that the generator returned by f only yields as many values as necessary for correctness (and
no more).

def equal(digits, n):
"""Return a string containing digits and + and - that evaluates to n.

>>> equal('45332', 527)
'-4+533-2'
>>> equal('45332', 38)
'4+5-3+32'
"""
assert can_equal(digits, n)
def f(digits):

yield digits
yield '-' + digits
for k in range(1, len(digits)):

for rest in f(digits[k:]):
yield digits[:k] + '+' + rest
yield digits[:k] + '-' + rest
yield '-' + digits[:k] + '+' + rest
yield '-' + digits[:k] + '-' + rest

return _______

Exam generated for <EMAILADDRESS> 19

No more questions.

