
CS 61A Structure and Interpretation of Computer Programs
Spring 2025 Midterm 1

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (6.0 points) What Would Python Print?

Answer the questions about this code. No errors occur while it is executed.

def double(x):
return 2 * x

def square(f):
return lambda x: f(x) * f(x)

def inc(f):
return lambda x: f(x + 1)

def triple(f):
return lambda x: f(f(f(x)))

def put(x):
return lambda f: f(x)

one = put(1)
triple(print)(5)

(a) (2.0 pt) What is displayed by the last line?

(b) (2.0 pt) What would be displayed by evaluating print(one(square(double)))

(c) (2.0 pt) What would be displayed by evaluating print(inc(put)(1)(triple(double)))

Exam generated for <EMAILADDRESS> 4

(d) (0.0 pt) This A+ question is not worth any points. It can only affect your course grade if
you have a high A and might receive an A+. Finish the rest of the exam first!

Write one line of code just after triple(print)(5) that would double and add one to all numbers in the
answers to parts (b) and (c) above. For example, for an answer containing 100, it would now contain 201
instead.

You may not use any numbers or arithmetic symbols (such as + or *) or arithmetic functions (such as add
or mul). You may not reassign triple or square. You may use multiple assignment: x, y = ___, ___

Exam generated for <EMAILADDRESS> 5

2. (8.0 points) Which One

Complete the environment diagram below to answer the questons about the calls to print. Only the questions
will be scored, not the diagram. Each call to print is evaluated once, and there are no errors caused by running
this code.

(a) (2.0 pt) What is displayed by the call to print on line 5?

(b) (2.0 pt) What is displayed by the call to print on line 14?

(c) (2.0 pt) What is displayed by the call to print on line 15?

(d) (2.0 pt) What is displayed by the call to print on line 17?

Exam generated for <EMAILADDRESS> 6

3. (13.0 points) Legit Digit

(a) (4.0 points)

Implement all_digits, which takes a positive integer n and one-argument function cond that always
returns True or False. It returns True if cond(d) returns True when called on every digit d in n, and
False otherwise.

def all_digits(n, cond):
"""Return whether cond returns true for every digit of positive n.

>> odd = lambda d: d % 2 == 1
>>> all_digits(123, odd) # not all digits are odd
False
>>> all_digits(357, odd) # all digits are odd
True
"""

while n:

if _______:
(a)

(b)

n = n // 10

return _______
(c)

i. (2.0 pt) Fill in blank (a).

ii. (1.0 pt) Fill in blank (b).

n = n % 10

n = n * 10

return True

return False

return odd

return cond

iii. (1.0 pt) Fill in blank (c).

n

True

False

odd(n)

cond(n)

Exam generated for <EMAILADDRESS> 7

(b) (3.0 points)

Definition. A prefix of a positive integer n is the value of n//pow(10, p) for some non-negative integer
p. For example, 3456 has prefixes 3456, 345, 34, 3, and 0.

Implement prefix_digits, which takes a positive integer n and a one-argument function cond that always
returns True or False. It returns the largest prefix of n for which cond returns True when called on every
digit of the prefix. You may call all_digits and process.

def process(n, check):
"""A function to help implement prefix_digits."""
while n:

if check(n):
return n

n = n // 10
return 0

def prefix_digits(n, cond):
"""Return the largest prefix of positive n for which cond returns true for every digit.

>>> odd = lambda d: d % 2 == 1
>>> prefix_digits(94720, odd)
9
>>> prefix_digits(919321, odd)
9193
>>> prefix_digits(2025, odd)
0
>>> prefix_digits(20252025, lambda d: d < 4)
202
>>> prefix_digits(20252025, lambda d: True)
20252025
"""
return process(n, lambda k: _______)

(d)

i. (3.0 pt) Fill in blank (d).

all_digits(n, cond)

all_digits(k, cond)

all_digits(n, cond(n))

all_digits(k, cond(k))

lambda cond: all_digits(n, cond)

lambda cond: all_digits(k, cond)

lambda cond: all_digits(n, cond(n))

lambda cond: all_digits(k, cond(k))

all_digits(n, lambda n: cond)

all_digits(k, lambda n: cond)

all_digits(n, cond(lambda n: n))

all_digits(k, cond(lambda n: k))

Exam generated for <EMAILADDRESS> 8

(c) (6.0 points)

Re-implement prefix_digits, which takes a positive integer n and a one-argument function cond that
always returns True or False. It returns the largest prefix of n for which cond returns True when called
on every digit of the prefix. You may not call all_digits or process.

def prefix_digits(n, cond):
"""Return the largest prefix of positive n for which cond returns true for every digit.

>>> odd = lambda d: d % 2 == 1
>>> prefix_digits(94720, odd)
9
>>> prefix_digits(919321, odd)
9193
>>> prefix_digits(2025, odd)
0
>>> prefix_digits(20252025, lambda d: d < 4)
202
"""
k = 0
while n >= ________:

(e)
if cond(_______):

(f)
k += 1

else:
n = n // 10

(g)
return n

i. (2.0 pt) Fill in blank (e).

0

k

k // 10

pow(10, k)

ii. (2.0 pt) Fill in blank (f).

n % 10

n // 10 % 10

n % pow(10, k)

n // pow(10, k)

n // 10 % pow(10, k)

n // pow(10, k) % 10

iii. (2.0 pt) Fill in blank (g). You may not call all_digits or process.

Exam generated for <EMAILADDRESS> 9

4. (4.0 points) Hailstone Returns

Definition. A hailstone sequence is formed by picking a positive integer n as the start then repeatedly updating
n until it is 1 using this rule: if n is even, divide it by 2; if n is odd, multiply it by 3 and add 1.

Implement hailstone, which prints each update in a hailstone sequence by displaying: the update number
(counting up from 1), the current n, an -> arrow symbol, and the updated n.

This implementation may not be possible using the template. If that’s the case, respond Impossible to the
following questions.

def hailstone(n):
"""Print numbered updates in the hailstone sequence.

>>> hailstone(10)
1 10 -> 5
2 5 -> 16
3 16 -> 8
4 8 -> 4
5 4 -> 2
6 2 -> 1
"""
def f():

if n % 2 == 1:
m = 3 * n + 1

else:
m = n // 2

(a)

(b)

k = 1
while n > 1:

k, n = k + 1, f()

(a) (2.0 pt) Fill in blank (a).

print(k, n, ->, m)

print(k, n, '->', m)

print(k - 1, n, ->, m)

print(k - 1, n, '->', m)

Impossible

(b) (2.0 pt) Fill in blank (b). If the problem is not possible using the template, write Impossible.

Exam generated for <EMAILADDRESS> 10

5. (4.0 points) It Takes Two

Implement at_least_two, which takes three arguments. It returns True if at least two of them are true values
and False otherwise. The built-in bool function takes one argument and returns True if it is a true value and
False if it is a false value.

def at_least_two(x, y, z):
"""Returns whether at least two of the arguments are true values.
>>> at_least_two(1 + 1, 3 + 3, 5 + 5)
True
>>> at_least_two(1 + 1, 3 - 3, 5 + 5)
True
>>> at_least_two(1 - 1, 3 + 3, 5 + 5)
True
>>> at_least_two(1 - 1, 3 + 3, 0)
False
>>> at_least_two(1 - 1, 0, 0)
False
"""
if _______:

(a)
return _______

else: (b)
return _______

(c)

(a) (2.0 pt) Fill in blank (a).

x

x == True

x and y

x == True and y == True

(b) (1.0 pt) Fill in blank (b). Select all correct answers.

2 y or z

2 y and z

2 bool(y or z)

2 bool(y and z)

2 not(y or z)

2 not(y and z)

(c) (1.0 pt) Fill in blank (c). Select all correct answers.

2 y or z

2 y and z

2 bool(y or z)

2 bool(y and z)

2 not(y or z)

2 not(y and z)

Exam generated for <EMAILADDRESS> 11

No more questions.

