
CS 61A Structure and Interpretation of Computer Programs
Spring 2025 Midterm 2 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (6.0 points) What Would Python Display?

Assume the following code has been executed. The pop method of a list removes and returns its last element.

s = [2, [5, 8], 11]
t = [1, 3, 5, 7, 9]

def add_t(x):
if isinstance(x, list):

return [add_t(y) for y in x]
else:

return x + t.pop()

m = map(add_t, s)

Write the value of each expression below or Error if an error occurs. Assume that each expression is evaluated
in order and sequentially, so evaluating the first could affect the value of the second. Write Map for a map
object and Function for a function.

(a) (2.0 pt) [x[1] for x in s if isinstance(x, list)]

[8]

(b) (1.0 pt) next(m)

3

5

7

9

 11

(c) (1.0 pt) t.pop()

1

3

5

 7

9

(d) (2.0 pt) [next(m) for z in range(2)]

[[10, 11], 12]

Exam generated for <EMAILADDRESS> 4

2. (7.0 points) This or That

Answer the questions about the code below. Draw an environment diagram, but the diagram itself will not be
scored.

(a) (3.0 pt) What is displayed by the call to print on line 7?

[5, [4, 6], 3]

(b) (3.0 pt) What is displayed by the call to print on line 14?

[1, [4, 6, 7], 3, [4, 6, 7]]

Exam generated for <EMAILADDRESS> 5

(c) (1.0 pt) What is the order of growth of the time it takes to execute result = nest(n) in terms of positive
integer n? Assume that append always takes one step (constant time).

def nest(n):
"""Create a nested list.
>>> nest(3)
[[[[], []], [[], []]], [[[], []], [[], []]]]
"""
s = []
first = s
for x in range(n):

next_s = []
s.append(next_s)
s.append(next_s)
s = next_s

return first

exponential

quadratic

 linear

logarithmic

constant

Exam generated for <EMAILADDRESS> 6

3. (10.0 points) Berkeley Time

(a) (5.0 points)

An Event instance has start and end attributes that are positive integers representing the number of
minutes after midnight that the Event begins and concludes.

Implement the Event class. The split method takes an integer k that evenly divides the difference
between the end and start times. It is a generator function that yields k sequential events of equal length
that together span the same time interval as the original event. Calling split does not change the event.

class Event:
"""An Event has a start and end time and can be split into equal-length shorter events.
>>> calapalooza = Event(980, 1180)
>>> list(calapalooza.split(4)) # Split it into 4 smaller events that go from 980 to 1180.
[Event(980, 1030), Event(1030, 1080), Event(1080, 1130), Event(1130, 1180)]
"""
def __init__(self, start, end):

self.start, self.end = start, end
def __repr__(self):

return f'Event({self.start}, {self.end})'
def split(self, k):

assert (self.end - self.start) % k == 0 # k evenly divides the duration of the event.
length = (self.end - self.start) // k

start = _______
(a)

for i in range(k):

yield _______
(b)

(c)

i. (1.0 pt) Fill in blank (a).

0

None

self

start

 self.start

ii. (3.0 pt) Fill in blank (b).

Event(start, start + length)

iii. (1.0 pt) Fill in blank (c).

 start = start + length

start = self.start + length

self.start = start + length

self.start = self.start + length

Exam generated for <EMAILADDRESS> 7

(b) (5.0 points)

A BerkeleyEvent is an Event with a modified split method. The first Event yielded by split starts at
the same time as the original event, but all events after the first one are 10 minutes shorter and start 10
minutes after the previous event ends. Again, assume k evenly divides the difference between the end and
start attributes.

class BerkeleyEvent(Event):
"""When a BerkeleyEvent is split, there is time between events.
>>> list(BerkeleyEvent(840, 930).split(3))
[Event(840, 870), Event(880, 900), Event(910, 930)]
"""
time = 10 # How much time between events
def split(self, k):

first = True
for e in _______:

(d)
if first:

first = False
else:

_______.start = _______ + _______
(e) (f) (g)

yield e

i. (2.0 pt) Fill in blank (d).

Event.split(self, k) or super().split(k)

ii. (1.0 pt) Fill in blank (e).

 e

self

self.e

iii. (1.0 pt) Fill in blank (f).

self

self.start

self.end

e

 e.start

e.end

Exam generated for <EMAILADDRESS> 8

iv. (1.0 pt) Fill in blank (g). Select all that apply.

2 time

� self.time

2 self.BerkeleyEvent.time

� BerkeleyEvent.time

2 Event.time

Exam generated for <EMAILADDRESS> 9

4. (11.0 points) DeepSeek

Definition. The depth of the root node of a tree is 0. The depth of each other node is one plus the depth of its
parent.

(a) (5.0 points)

Implement deepest, which takes a Tree instance t and a value x. It returns the largest depth of a node
labeled x in t. If there are no nodes labeled x in t, then deepest(t, x) returns None.

The Tree class appears on the Midterm 2 study guide (page 2, left column).

def deepest(t, x):
"""Return the maximum depth of a node labeled x in Tree t.
Return None if x is not a label in t.

>>> example = Tree(30, [Tree(20), Tree(20, [Tree(30, [Tree(20)])])])
>>> deepest(example, 30)
2
>>> deepest(example, 20)
3
>>> print(deepest(example, 10))
None
"""
below = [deepest(b, x) for b in t.branches]
depths = [_______]

(a)
if _______:

(b)
depths._______

(c)
if depths:

return max(depths)
else:

return None

i. (3.0 pt) Fill in blank (a). Include for and in and if in your answer.

y+1 for y in below if y is not None

ii. (1.0 pt) Fill in blank (b).

x in depths

depths

not depths

t == x

 t.label == x

t.is_leaf()

Exam generated for <EMAILADDRESS> 10

iii. (1.0 pt) Fill in blank (c).

append(0)

Exam generated for <EMAILADDRESS> 11

(b) (6.0 points)

Implement deep, which takes a Tree instance t. It returns a dictionary containing each unique node label
of t as a key. The value for each key k is the largest depth of any node in t labeled k.

IMPORTANT: You may not call deepest in your implementation.

Hint: For a dictionary d, d.get(1, 2) returns the value for the key 1 if that key appears in d and 2
otherwise.

def deep(t):
"""Return a dictionary containing each unique label of t as a key
and the maximum depth of a node labeled with that key as its value.

>>> deep(Tree(30, [Tree(20), Tree(20, [Tree(30, [Tree(20)])])]))
{30: 2, 20: 3}
"""
result = {}
def visit(node, depth):

_______ = max(_______, result.get(_______, 0))
(d) (e) (f)

for b in node.branches:

(g)
visit(t, 0)
return result

i. (2.0 pt) Fill in blank (d).

result[node.label]

ii. (1.0 pt) Fill in blank (e).

0

1

 depth

t.label

node.label

iii. (1.0 pt) Fill in blank (f).

depth

t

t.label

node

 node.label

iv. (2.0 pt) Fill in blank (g).

visit(b, depth + 1)

Exam generated for <EMAILADDRESS> 12

5. (16.0 points) Just Add and Multiply

Definition. A plus-times-expression for a list (or linked list) of numbers inserts either + or * between each
adjacent pair of numbers. For example, 2*3+4+5 is one possible plus-times-expression for [2, 3, 4, 5].

(a) (5.0 points)

Implement muladd, which takes a linked list of numbers s. It returns the value of the plus-times-expression
that starts with * and then alternates between + and *. If s has only one element, muladd returns that
element.

The Link class is defined on the left column of page 2 of the Midterm 2 Study Guide.

def muladd(s):
"""Combine the numbers in linked list s by alternately multiplying and adding.

>>> example = Link(9, Link(4, Link(7, Link(2, Link(0))))) # <9 4 7 2 0>
>>> muladd(example) # 9 * 4 + 7 * 2 + 0, not 9 * (4 + 7 * (2 + 0))
50
>>> muladd(Link(2, example)) # 2 * 9 + 4 * 7 + 2 * 0
46
>>> muladd(Link(2))
2
"""
if s is Link.empty:

return 0

elif s.rest is Link.empty:

return _______
(a)

else:

return _______
(b)

i. (1.0 pt) Fill in blank (a).

0

1

 s.first

s.rest

s.rest.first

ii. (4.0 pt) Fill in blank (b). If your answer is too long, you can continue on another line.

s.first * s.rest.first + muladd(s.rest.rest)

Exam generated for <EMAILADDRESS> 13

(b) (5.0 points)

Implement ways, which takes positive integers k and n. It returns the number of possible plus-times-
expressions for a list of length n that have at most k *-symbols in a row. For example, 2+3*4*5*6+7*8*9+10+11*12*13*14+15*16
has 3 in a row 3*4*5*6, then 2 in a row 7*8*9, then 3 in a row 11*12*13*14, then 1 in a row 15*16.

def ways(k, n):
"""Return the number of plus-times-expressions with at most k consecutive *'s for n numbers.

>>> ways(1, 4) # For [2, 3, 4, 5], these 5 ways: 2+3+4+5, 2+3+4*5, 2+3*4+5, 2*3+4+5, 2*3+4*5
5
>>> ways(2, 4) # For [2, 3, 4, 5], the 7 ways would also include 2+3*4*5 and 2*3*4+5
7
>>> ways(2, 5) # Some examples for [2, 3, 4, 5, 6]: 2+3*4+5*6 & 2*3*4+5*6 (but not 2+3*4*5*6)
13
"""
def f(left, n):

if _______:
(c)

return 1

result = f(_______ , n - 1)
(d)

if left:

result += _______
(e)

return result

return f(k, n)

i. (1.0 pt) Fill in blank (c).

left == 0

left == 1

n == 0

 n == 1

ii. (1.0 pt) Fill in blank (d).

left

left - 1

 k

k - 1

iii. (3.0 pt) Fill in blank (e).

f(left - 1, n - 1)

Exam generated for <EMAILADDRESS> 14

(c) (6.0 points)

Implement close, which takes a list of numbers s and a number x. It returns the number closest (in
absolute value) to x that is the value of some plus-times-expression for s.

Hint: A slice that starts past the end of a list is empty. For example, [2, 3, 4][3:] evalautes to [].

The product function used to implement close is defined below.

def close(s, x):
"""Return the value of a plus-times-expression for s that is closest to x.

>>> print(close([1, 2, 3, 4], 10)) # 1 + 2 + 3 + 4 = 10
10
>>> print(close([1, 2, 3, 4], 20)) # 1 * 2 * 3 * 4 = 24 (4 away from 20)
24
>>> print(close([1, 2, 3, 4], 30)) # 1 + 2 * 3 * 4 = 25 (5 away from 30)
25
>>> print(close([3, 7, 5, 4, 2, 6], 66)) # 3 * 7 + 5 * 4 * 2 + 6 = 67 (1 away from 66)
67
"""
if not s:

return 0
choices = [product(s[:i]) + _______ for i in range(1, len(s) + 1)]

(f)

return min(choices, key=_______)
(g)

def product(s):
"""Return the result of multiplying together the elements of a non-empty list of numbers s."""
if len(s) == 1:

return s[0]
return s[0] * product(s[1:])

i. (4.0 pt) Fill in blank (f).

close(s[i:], x - product(s[:i]))

ii. (2.0 pt) Fill in blank (g). Select all that apply. Assume sub has been imported from the operator
module. The sub function takes two arguments and subtracts the second from the first.

2 abs

2 sub

2 abs(sub)

2 sub(abs)

� lambda y: abs(x - y)

2 lambda x, y: abs(x - y)

Exam generated for <EMAILADDRESS> 15

(d) (0.0 points)

This A+ question is not worth any points. It can only affect your course grade if you have
a high A and might receive an A+. Finish the rest of the exam first!

Fill in the blank of close_exp, which takes a list of numbers s and a number x. It returns a string
containing a plus-times-expression for s that evaluates to a number that is as close (in absolute value) as
possible to x. (If there is more than one such expression, return any of them.)

The built-in eval function takes a string containing an expression and returns its value. For example,
eval('2+2') evaluates to 4.

def close_exp(s, x):
"""Return the plus-times-expression of s that has a value closest to x.

>>> print(close_exp([1, 2, 3, 4], 10)) # 1 + 2 + 3 + 4 = 10
1+2+3+4
>>> print(close_exp([1, 2, 3, 4], 20)) # 1 * 2 * 3 * 4 = 24 (4 away from 20)
1*2*3*4
>>> print(close_exp([1, 2, 3, 4], 30)) # 1 + 2 * 3 * 4 = 25 (5 away from 30)
1+2*3*4
>>> print(close_exp([3, 7, 5, 4, 2, 6], 66)) # 3 * 7 + 5 * 4 * 2 + 6 = 67 (1 away from 66)
3*7+5*4*2+6
"""
goal = close(s, x)
term = ''
for i in range(len(s)):

if term:
term += '*'

term += str(s[i])
candidate = term
if i < len(s) - 1:

candidate += _________________________
if eval(candidate) == goal:

return candidate

i. (0.0 pt) Fill in the blank. If your answer is too long, you can continue on another line.

'+' + close(s[i+1:], x - eval(term))

Exam generated for <EMAILADDRESS> 16

No more questions.

