
CS 61A Structure and Interpretation of Computer Programs
Summer 2023 Final Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

Oski Bear

(b) What is your student ID number?

123456789

(c) What is your @berkeley.edu email address?

oski@berkeley.edu

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Oski the Bear

Exam generated for <EMAILADDRESS> 3

1. (11.0 points) What Would You Display

(a) (5.0 points) WWPD

For each expression below, choose the correct option or write the output displayed by the interactive
Python interpreter when the expression is evaluated. The output may have multiple lines.

• If an error occurs, write “Error”, but include all output displayed before the error.
• If evaluation would run forever, write “Forever”.
• To display a function value, write “Function”.
• If the evaluated expression wouldn’t display anything, write “Nothing”. The interactive interpreter

displays the value of a successfully evaluated expression, unless it is None.
• If you need to write a level of indentation, please draw an arrow, like –>, to represent one singular

level of indentation. Draw one arrow for each level of indentation you want to indicate. This may be a
tab (\t) or multiple whitespaces.

• Assume the expressions are evaluated in order in the same interactive session, and so evaluating an
earlier expression may affect the result of a later one.

• Assume the Tree class has been defined (as written on the Study Guide provided)
• Assume the Tree data abstraction has been defined (as written on the Study Guide provided)

i. (0.5 pt)

>>> print("luck!", print("good"))

good
luck! None

ii. (1.0 pt)

>>> t = Tree("hi", [Tree("you"), Tree("there")])
>>> print(t)

hi
–> you
–> there

iii. (1.0 pt)

>>> t

Tree("hi", [Tree("you"), Tree("there")])

Exam generated for <EMAILADDRESS> 4

iv. (1.0 pt)

>>> t.branches.append(Tree("hey", ["hello"]))

Error

v. (0.5 pt)

>>> t.label = "hello"
>>> t.branches[0].label = "friend"

Nothing

vi. (1.0 pt) Do any of the above expressions in this question break the abstraction barrier?

YES

 NO

Exam generated for <EMAILADDRESS> 5

(b) (3.0 points) WWSD

For each expression below, choose the correct option or write the output displayed by the interactive
Scheme interpreter when the expression is evaluated. The output may have multiple lines.

• If an error occurs, write “Error”, but include all output displayed before the error.
• If evaluation would run forever, write “Forever”.
• To display a function value, write “Function”.
• If the evaluated expression wouldn’t display anything, write “Nothing”. The interactive interpreter

displays the value of a successfully evaluated expression, unless it is undefined.
• Assume the Tree data abstraction has been defined (as written on the Study Guide provided)

i. (0.5 pt)

scm> (define t (tree 4 (list (tree 6 nil) (tree 2 (list (tree 7 nil))))))

t

ii. (1.0 pt)

scm> t

(4 6 2 7)

(4 (6 2 (7)))

 (4 (6) (2 (7)))

(tree 4 (list (tree 6 nil) (tree 2 (list (tree 7 nil)))))

(tree 4 (tree 6 nil) (tree 2 (tree 7 nil)))

Error

Forever

Function

Nothing

Exam generated for <EMAILADDRESS> 6

iii. (1.0 pt)

scm> (define f (lambda (x) (if (null? (cdr x)) (car x) (+ (car x) (f (cdr x))))))
f
scm> (f '(1 2 3))
6

Given this error, select all expressions that could have been the input to the interactive Scheme
interpreter.

Traceback (most recent call last):
0 (+ (car x) (f (cdr x)))
Error: operand 0 ((quote hi)) is not a number

2 (f '('hi))

2 (f '(hi))

2 (f (hi))

2 (f (quote ((quote hi))))

� (f '('hi 'hello))

� (f '('hi 2))

2 (f '(2 'hi))

2 (f (2 'hi))

iv. (0.5 pt)

scm> (or #f 0 2 (and 3 1 (or 5)))

0

Exam generated for <EMAILADDRESS> 7

(c) (2.0 points) WWRD

For each RegEx expression below, choose all options that would fully match if put as test strings in
Regex101.

i. (2.0 pt)

^b[^b-z]{1}[arken]+(bi)*es?

� bakes

� baarkenbie

� barre

2 bbarbies

� barbie

2 ken

2 barbiess

� bakbie

Exam generated for <EMAILADDRESS> 8

(d) (1.0 points) WWSQLD

Assume the records table that you’ve seen in lecture, discussion, and labs so far has been implemented in
your interactive SQL interpreter so that it is this table:

i. (1.0 pt) Given this SQL query:

sql> SELECT AVG(a.salary) FROM records AS a, records AS b WHERE a.name = b.supervisor
...> GROUP BY a.division ORDER BY a.division LIMIT 2;

which outputs the table below, what is being displayed and represented by this new table? In other
words, translate this SQL query into English pseudocode. Please summarize in 1-2 sentences. Responses
with more than 2 sentences will be docked points.

This shows the average salary for supervisors who are in the accounting and
administration divisions.
OR
The first two rows of the average salary column of the records table joined
with the records table where the kept salary is from a supervisor grouped
by the division ordered by the division in ascending order.
Any attempt to describe a table, such as, “a table with two rows and 1
column of the average salary” will receive 0 points.

Exam generated for <EMAILADDRESS> 9

2. (12.0 points) Slipknot

(a) (2.0 points) Product

Implement product, a function that takes in a linked list s and returns the product over all the values in
the linked list. Assume that the initial list s is not Link.empty.

def product(s):
"""
Takes in a linked list S and returns the product over all the values
in the linked list.

>>> product(Link(2, Link(5))) # 2 * 5 = 10
10
>>> product(Link(7, Link(2, Link(7)))) # 7 * 2 * 7 = 98
98
>>> product(Link(5))
5
"""
if s is Link.empty:

return _________
(a)

return _________
(b)

i. (0.5 pt) Fill in blank (a)

1

ii. (1.5 pt) Fill in blank (b)

s.first * product(s.rest)

Exam generated for <EMAILADDRESS> 10

(b) (5.0 points) Untangle

Implement untangle, a function that takes in a linked list s with strictly positive values. The function
mutates the linked list to only contain 1s, where the length of the resulting linked list is equal to the sum
of the values in the original list. untangle potentially modifies the values in s and adds new Links to s.

For example, calling untangle on <3 1 2> will mutate the linked list to become <1 1 1 1 1 1>. See the
doctests for more examples.

def untangle(s):
"""
Takes in a linked list S and mutates S to only contain 1s.
The length of the resulting list is equal to the sum of the
values in the original list. Assume the values in S are strictly
positive.

>>> a = Link(5)
>>> untangle(a)
>>> print(a)
<1 1 1 1 1>
>>> b = Link(3, Link(2, Link(4)))
>>> untangle(b)
>>> print(b)
<1 1 1 1 1 1 1 1 1>
>>> c = Link(1)
>>> untangle(c)
>>> c
Link(1)
"""
if _________:

(a)
return

next = _________
(b)

while _________:
(c)

s.rest = _________
(d)

s.first = _________
(e)

(f)

i. (1.0 pt) Fill in blank (a)

s is Link.empty

ii. (1.0 pt) Fill in blank (b)

s.rest

Exam generated for <EMAILADDRESS> 11

iii. (0.5 pt) Fill in blank (c)

s is not Link.empty

s.rest is not Link.empty

s is not Link.empty and s.rest is not Link.empty

s is not Link.empty or s.rest is not Link.empty

s.first > 0

s.first < 0

 s.first > 1

s.first < 1

iv. (1.0 pt) Fill in blank (d)

1

s

Link(1)

Link(1, s)

 Link(1, s.rest)

Link(s, Link(1))

Link(s.first, Link(1))

v. (0.5 pt) Fill in blank (e)

s

s.rest

s.rest.first

 s.first - 1

s.first + 1

-1 * s.first

vi. (1.0 pt) Fill in blank (f)

untangle(next)

Exam generated for <EMAILADDRESS> 12

(c) (5.0 points) Knots

Given a linked list with only 1s, we can create knots inside the list. A knot is formed by merging multiple
Links with 1s into a single Link, where the resulting Link stores the number of 1 nodes that were merged
together.

For example, given a linked list of <1 1 1 1>, we can generate the following knotted linked lists:

<2 1 1> # Linked list with <(1 + 1), 1, 1>
<1 2 1> # Linked list with <1, (1 + 1), 1>
<1 1 2> # Linked list with <1, 1, (1 + 1)>
<2 2> # Linked list with <(1 + 1), (1 + 1)>
<3 1> # Linked list with <(1 + 1 + 1), 1>
<1 3> # Linked list with <1, (1 + 1 + 1)>
<4> # Linked list with <(1 + 1 + 1 + 1)>

Implement knot, a function that takes in a linked list s with only 1s and returns a new linked list with
one or more knots. knot should return the knotted linked list that has the largest product over all of its
values. If there is a tie between multiple linked lists, return any list. Assume s has at least 2 nodes.

You may use functions implemented in previous subparts (product, untangle) to solve this question.

def knot(s):
"""

Takes in a linked list S with only 1s and returns a new knotted linked list.
The returned knotted linked list has the largest product over all of its values.
If there is a tie between multiple linked lists, return any list.
Assume S has at least 2 nodes.

>>> a = Link(3)
>>> untangle(a) # <1 1 1>
>>> knot(a) # <1 1 1> --> <3>
Link(3)
>>> b = Link(5)
>>> untangle(b) # <1 1 1 1 1>
>>> knot(b) # <1 1 1 1 1> --> <2 3> or <3 2>
Link(2, Link(3))
>>> c = Link(10)
>>> untangle(c) # <1 1 1 1 1 1 1 1 1 1>
>>> knot(c) # <1 1 1 1 1 1 1 1 1 1> --> any list with two 2s and two 3s
Link(2, Link(2, Link(3, Link(3))))
"""
if _________:

(a)
return s

next = s.rest
keep_first = Link(_________, _________)

(b) (c)
merge_first = knot(_________)

(d)
return _________([keep_first, merge_first], key=_________)

(e) (f)

Exam generated for <EMAILADDRESS> 13

i. (0.5 pt) Fill in blank (a)

s is Link.empty

 s.rest is Link.empty

s is Link.empty and s.rest is Link.empty

s.first == 1

s.first != 1

s.first <= 1

ii. (1.0 pt) Fill in blank (b)

s.first

iii. (1.0 pt) Fill in blank (c)

knot(next) -OR- knot(s.rest)

iv. (1.0 pt) Fill in blank (d)

Link(next.first, next)

Link(next.first, next.rest)

Link(s.first, next)

Link(s.first, next.rest)

Link(s.first + next.first, next)

 Link(s.first + next.first, next.rest)

Link(next.first + next.rest.first, next)

Link(next.first + next.rest.first, next.rest)

v. (0.5 pt) Fill in blank (e)

knot

sum

 max

min

map

filter

vi. (1.0 pt) Fill in blank (f)

product

Exam generated for <EMAILADDRESS> 14

3. OOPeration

(a) (3.0 points) Patient

Leena is a hospitalist and is dissatisfied with the current system that organizes patient information at her
hospitals, Kryser and Stanville, which have different admit and discharge protocols. Since some patients
are admitted at multiple hospitals (somehow), the system gets confused.

You suggest representing each patient with a specific set of attributes - name (a string), patient ID (an
integer), age (an integer), and admitted, a boolean that indicates whether they are currently admitted at
a hospital.

A valid patient ID must be a seven-digit number, with the first three digits being less than 4 and the last
four digits being between 0-9.

Start by implementing the Patient class.

class Patient:
"""
>>> kim = Patient("Kim", 212764, 12)
Invalid Patient ID entered. Try again.
>>> kim.ID
>>> kim.set_ID(3337656)
Valid Patient ID
>>> kim.ID
3337656
>>> tina = Patient("Tina", 2219542, 93)
Valid Patient ID
"""
def __init__(self, name, ID, age):

self.name = name
self.age = age
self.admitted = False

(a)

def set_ID(self, ID):
if re.match(_________, f"{ID}"):

(b)
self.ID = ID
print("Valid Patient ID")

else:

(c)
print("Invalid Patient ID entered. Try again.")

i. (1.0 pt) Fill in blank (a)

self.set_ID(ID)

ii. (1.0 pt) Fill in blank (b)

r"ˆ[0-3]{3}\d{4}$"

Exam generated for <EMAILADDRESS> 15

iii. (1.0 pt) Fill in blank (c)

self.ID = None

Exam generated for <EMAILADDRESS> 16

(b) (6.0 points) Hospital

Implement the Hospital class. A Hospital instance has two instance attributes: name and patient_list,
which keeps track of all the patients (Patient instances) admitted to that hospital.

class Hospital:
"""
>>> clinic42 = Hospital("StanKrys")
>>> neel = Patient("Neel", 3125456, 63)
Valid Patient ID
>>> clinic42.admit(neel)
>>> clinic42.admit_from_list([Patient("Ne", 3125456, 63), Patient("Sam", 1125432, 14)])
Valid Patient ID
Valid Patient ID
Patient with ID 3125456 is already admitted
>>> clinic42.patient_IDs_list()
[3125456, 1125432]
>>> clinic42.discharge(clinic42.find_patient(3125456))
>>> clinic42.patient_IDs_list()
[1125432]
"""
hospitals = {}
def __init__(self, name):

self.patient_list = []

(a)

def admit(self, patient):
IDs = _________

(b)
if patient.ID in IDs:

print(f"Patient with ID {patient.ID} is already admitted")
else:

(c)

patient.admitted = True

def admit_from_list(self, patient_list):
for p in patient_list:

(d)

def discharge(self, patient):
if patient.ID in self.patient_IDs_list():

(e)

patient.admitted = False

def patient_IDs_list(self):
return _________

(f)

def find_patient(self, ID):
for p in self.patient_list:

if ID == p.ID:
return p

Exam generated for <EMAILADDRESS> 17

i. (1.0 pt) Fill in blank (a)

self.hospitals = self.hospitals.append(self)

hospitals[name] = self

 Hospital.hospitals[name] = self

hospitals.append(self)

self.hospitals = self.hospitals.extend(self)

Hospital.hospitals = {self.name: self}

ii. (1.0 pt) Fill in blank (b)

self.patient_list

patient_IDs_list(self)

self.patient_IDs_list

self.hospitals.extend(self)

self.patient_IDs_list(self.patient_list)

 self.patient_IDs_list()

iii. (1.0 pt) Fill in blank (c)

self.patient_list.append(patient)

iv. (1.0 pt) Select all that apply for blank (d)

2 self.admit_from_list(p)

� self.admit(p)

2 patient_IDs_list

2 self.patient_list.append(patient)

� Hospital.admit(self,p)

2 self.patient_list.extend(patient)

2 p.admit(self)

v. (1.0 pt) Fill in blank (e)

self.patient_list.remove(patient)

vi. (1.0 pt) Fill in blank (f)

[p.ID for p in self.patient_list]

Exam generated for <EMAILADDRESS> 18

(c) (7.0 points)

Implement the Kryser and Stanville classes.

Here are the protocols:

• An ID is unique to each patient so Patient("Sam", 1234511, 61) is the same as Patient("Samantha",
1234511, 60). This ensures the system doesn’t have duplicate medical charts for a patient.

• Stanville will not discharge patients who are also admitted at Kryser
• Kryser will not admit patients who are also admitted at Stanville
• There is only one Kryser Hospital and one Stanville Hospital with the names “Kryser” and “Stanville,”

respectively.
• Assume these are the only two hospitals that patients can be admitted to

class Kryser(Hospital):

"""
>>> k = Kryser("Kryser")
>>> s = Stanville("Stanville")
>>> nora = Patient("Nora", 3125456, 63)
Valid Patient ID
>>> jim = Patient("Jim", 2125496, 34)
Valid Patient ID
>>> s.admit(nora)
>>> nora.admitted
True
>>> k.admit(nora) # Kryser will NOT admit Stanville patients
Error: Patient with ID 3125456 is already admitted at Stanville
>>> k.admit(jim)
>>> k.admit(Patient("Jimmy", 2125496, 36)) # same patient
Valid Patient ID
Patient with ID 2125496 is already admitted
>>> k.patient_IDs_list()
[2125496]
>>> s.admit(jim) # Stanville is okay admitting Kryser patients
>>> s.discharge(jim)
Error: Patient with ID 2125496 hasn’t been discharged from Kryser
>>> k.discharge(jim)
>>> s.discharge(jim)
>>> jim.admitted
False
"""

def admit(self, patient):
if _________ and not patient in self.patient_list:

(a)
print(f"Error: Patient with ID {patient.ID} is already admitted at Stanville")

else:
_________.admit(patient)

(b)

def discharge(self, patient):

(c)

Exam generated for <EMAILADDRESS> 19

class Stanville(_________):
(d)

def admit(self, patient):

(e)

def discharge(self, patient):
kryser = _________

(f)
if patient.admitted and patient.ID in kryser.patient_IDs_list():

print(f"Error: Patient with ID {patient.ID} hasn’t been discharged from Kryser")
else:

(g)

i. (1.0 pt) Fill in blank (a)

patient.admitted

ii. (1.0 pt) Fill in blank (b)

self

Hospital

 super()

self.Hospital

super

iii. (1.0 pt) Fill in blank (c)

super().discharge(patient)

iv. (1.0 pt) Fill in blank (d)

 Hospital

Kryser

Hospital, Kryser

Kryser, Hospital

None

Patient

None of the answers are correct

Exam generated for <EMAILADDRESS> 20

v. (1.0 pt) Fill in blank (e)

super().admit(patient)

vi. (1.0 pt) Fill in blank (f)

Hospital.hospitals["Kryser"]

vii. (1.0 pt) Fill in blank (g)

self.discharge(patient)

 super().discharge(patient)

Kryser.discharge(patient)

Kryser.discharge(self, patient)

None

patient

None of the answers are correct

Exam generated for <EMAILADDRESS> 21

(d) (3.0 points) Find Patient

The system at Stanville glitched and some of the patient information (name, ID, and age) got shuffled.
Leena urgently needs the ID of the patient she was going to see next. Luckily, she knows the patient’s
age, that they were only admitted at Stanville, and that the product of their ID digits equals their age.
Implement find_patient, which takes in the patient’s age age and returns a function, checker, to which
Leena can feed in the shuffled IDs until she finds the correct ID to return the Patient object.

You may use the Hospital class and assume the Stanville hospital object exists.

def find_patient(age):
"""
>>> s = Stanville("Stanville")
>>> grace = s.admit(Patient("grace", 1121717, 98))
Valid Patient ID
>>> marie = s.admit(Patient("marie", 2121141, 16))
Valid Patient ID
>>> machine = find_patient(98)
>>> machine(1211311)(1023209)(1121717) # 1 * 1 * 2 * 1 * 7 * 1 * 7 = 98
<__main__.Patient object>
>>> find_patient(16)(1211311)(1123113)(1111111)(2121141)
<__main__.Patient object>

"""
def checker(ID):

prod = 1
parse_digits = ID
while parse_digits > 0:

parse_digits, last = parse_digits // 10, parse_digits % 10
prod *= last

if prod == age:
stanville = _________

(a)
return stanville._________

(b)
else:

return _________
(c)

return checker

i. (1.0 pt) Fill in blank (a)

Hospitals.hospitals["Stanville"]

ii. (1.0 pt) Fill in blank (b)

find_patient(ID)

Exam generated for <EMAILADDRESS> 22

iii. (1.0 pt) Select all that apply for blank (c)

2 checker(age)

2 find_patient

2 find_patient()

� find_patient(age)

� checker

2 checker(x)

2 find_patient(x)

Exam generated for <EMAILADDRESS> 23

4. (8.0 points) Ratios

(a) Definition: The number of labels above tree t is the number of labels along the path from this node to
the root of t excluding the current node.

Definition: The number of labels below tree t is the number of labels within a subtree t excluding
the current node.

Implement ratio, which takes a Tree t and predicate function f, and mutates t into a Ratio Tree. A
Ratio Tree replaces the value at each label with a 2-element list. Index 0 holds the number of labels above
this node for which f(label) returns true. Index 1 holds the number of labels below this node for which
f(label) returns true.

For example, consider the label 2 in the first branch of the root of the tree shown below. 2 has one label
along the path to the root that is odd (1). 2 has one label within its subtrees that are odd (1). As a result,
the label is replaced with the list [1, 1]

def ratio(t, f):
"""Mutate each label of t to the ratio of the number of labels above

it to the number of labels below it, represented as a 2-element
list – provided that f(label) == true.

>>> t = Tree(15, [Tree(1, [Tree(8)]), Tree(5), (Tree(4, [Tree(6), Tree(7, [Tree(9)])]))])
>>> pred = lambda x: x % 2 == 1 # odd?
>>> ratio(t, pred)
>>> t
Tree([0, 4], [Tree([1, 0], [Tree([2, 0])]), Tree([1, 0]), Tree([1, 2],
[Tree([1, 0]), Tree([1, 1], [Tree([2, 0])])])])
"""
def helper(t, filtered_depth):

above = _________
(a)

if _________:
(b)

(c)

below = _________
(d)

for b in t.branches:

(e)
below += _________

(f)
t.label = [above, below]

return helper(t, 0)

Exam generated for <EMAILADDRESS> 24

i. (1.0 pt) Fill in blank (a)

filtered_depth

ii. (1.0 pt) Fill in blank (b)

t.label

t.is_leaf()

 f(t.label)

f(t.branches)

any([f(b.label) for b in t.branches])

all([f(b.label) for b in t.branches])

iii. (1.0 pt) Fill in blank (c)

return f(t.label)

return above

t.label = [above, 0]

t.label = [0, 0]

 filtered_depth += 1

above += 1

iv. (1.5 pt) Fill in blank (d)

 len([b for b in t.branches if f(b.label)])

sum([b for b in t.branches if f(b.label)])

sum([b.label for b in t.branches])

sum([helper(b, filtered_depth) for b in t.branches])

len([helper(b, filtered_depth) for b in t.branches])

all([helper(b, filtered_depth) for b in t.branches])

v. (2.0 pt) Fill in blank (e). You cannot use and, or, if, or else.

helper(b, filtered_depth)

Exam generated for <EMAILADDRESS> 25

vi. (1.5 pt) Fill in blank (f)

len([b for b in t.branches if f(b.label)])

sum([b for b in t.branches if f(b.label)])

 sum([b.label[1] for b in t.branches])

len([b.label[0] for b in t.branches if f(b.label)])

sum([helper(b, filtered_depth) for b in t.branches])

len([helper(b, filtered_depth) for b in t.branches])

Exam generated for <EMAILADDRESS> 26

5. (8.0 points) Kirby Consume

(a) Consumable?

Kirby is stuck in a forest of Whispy Woods. In order to get out, he needs to consume Maxim Tomatoes
from vines along the way. However, tomato vines are picky about temperature and only grow tomatoes
above or below a certain threshold temperature.

In fact, each vine can be represented using these three attributes: indicator, threshold, and tomatoes. A
vine grows tomatoes if one of the following is true:

• It has a positive indicator and the current temperature is strictly above the threshold.
• It has a negative indicator and the current temperature is strictly below the threshold.

You may assume that an indicator is never 0.

If the vine can grow tomatoes, Kirby will consume a certain number of tomatoes from the vine, indicated
by the third attribute of a vine object.

We choose to use the following Scheme data abstraction to represent a vine:

Constructor: (make-vine ind thres tomatoes) creates an vine object with the given indicator, threshold,
and tomatoes.

Selectors:

• (get-ind vine) returns the vine’s indicator
• (get-thres vine) returns the vine’s threshold
• (get-tomatoes vine) returns the vine’s number of tomatoes

Note: You may assume that the vine ADT has been properly implemented already.

Implement consumable?, which takes in an vine object, vine, and the current temperature, temp. It returns
#t if the vine can be consumed from given the current temperature, and #f otherwise. (consumable?
(make-vine -1 31 10) 0) evaluates to #t, as the current temperature of 0 is below the threshold of 31
and the indicator of -1 is negative.

; doctests
(define v (make-vine -1 31 10))
(expect (consumable? v 0) #t) ; -1 is negative and 0 < 31
(expect (consumable? v 32) #f) ; -1 is negative and 32 > 31

(define (consumable? vine temp)
(_________

temp
(get-thresh vine))

)

i. (2.0 pt) Fill in the blank. Hint: Your expression should evaluate to an operator.

(if (< (get-ind vine) 0) < >)

Exam generated for <EMAILADDRESS> 27

(b) (6.0 points) Kirby Consume

Implement kirby-consume, which takes in a list of vine objects vines, the current temperature temp, and
min-tomatoes, the minimum amount of tomatoes Kirby needs to consume from the vines in order to get
out. It returns #t if Kirby was able to consume enough tomatoes to get out and #f otherwise.

Note: You may assume that consumable? has been implemented correctly regardless of your solution to
the previous part, and you may call it in your implementation for this part. You may leave lines blank
and can specify so by answering Blank for the question. Your implementation must be tail recursive.
Any non-tail recursive solution will receive no credit.

Hint: First try writing a tail recursive solution without looking the multiple choice options.

; doctests
(define v1 (make-vine 1 20 2))
(define v2 (make-vine 1 25 5))
(define v3 (make-vine -1 30 3))
(define vines (list v1 v2 v3))
(expect (kirby-consume vines 20 8) #f) ; 0 + 0 + 3 < 8
(expect (kirby-consume vines 40 7) #t) ; 2 + 5 + 0 = 7
(expect (kirby-consume vines 27 9) #t) ; 2 + 5 + 3 > 9

(define (kirby-consume vines temp min-tomatoes)
(if (null? vines)

(a)

(begin
(define v (car vines))
(_________

(b)

(c)

(d)
_________))))

(e)

i. (1.0 pt) Fill in blank (a)

0

#t

#f

min-tomatoes

(> min-tomatoes 0)

 (<= min-tomatoes 0)

Exam generated for <EMAILADDRESS> 28

ii. (1.0 pt) Fill in blank (b).

cons

 kirby-consume

and

or

temp

<

>

Blank

iii. (1.0 pt) Fill in blank (c).

 (cdr vines)

vines

(car vines)

nil

temp

(>= min-tomatoes 0)

(<= min-tomatoes 0)

Blank

iv. (1.0 pt) Fill in blank (d).

0

 temp

(get-ind (car vines))

(get-tomatoes (car vines))

(kirby-consume (cdr vines) temp (- min-tomatoes (get-tomatoes v)))

(kirby-consume (cdr vines) temp min-tomatoes)

Blank

v. (2.0 pt) Fill in blank (e).

(+ min-tomatoes (get-tomatoes v))

(- min-tomatoes (get-tomatoes v))

(if (consumable? v temp) min-tomatoes 0))

(and (consumable? v temp) (kirby-consume (cdr vines) temp min-tomatoes))

(or (consumable? v temp) (kirby-consume (cdr vines) temp min-tomatoes))

 (- min-tomatoes (if (consumable? v temp) (get-tomatoes v) 0))

(+ min-tomatoes (if (consumable? v temp) (get-tomatoes v) 0))

Blank

Exam generated for <EMAILADDRESS> 29

6. (9.0 points) Matchmaking

(a) (6.0 points) do_match_form

Modify scheme to support the new special form match. A match expression has the following form: (match
<subject> <clause1> <clause2> ...)

A <clause> has the following form (<case> <consequent>). A <subject> is any expression.

The match expression first evaluates <subject>.

Starting with the first clause, evaluates <case>. If it is scheme equal to the evaluated subject, i.e (equal?
<subject> <case>) is true, evaluate the <consequent> and return it. If they are not scheme equal,
proceed to the next clause. If there are no more clauses, the return value is undefined.

scm> (define op 'add)
scm> (match op
...> ('mul (* 1 2))
...> ('add (+ 1 2))
...> ('sub (- 1 2)))
3
scm> (match op
...> ((print 'mul) (print '2))
...> ('add (+ 1 2))
...> ('(print 'sub) (- 1 2)))
mul
3
scm> (match op ('mul (* 1 2) (* 3 4))) ; More than two elements in a <clause>
Traceback (most recent call last):
0 (match op ('mul (* 1 2) (* 3 4)))

Error: too many operands in form

Assume that the rest of the Scheme interpreter has been implemented correctly and only do_match_form
needs to be implemented. You may use the following functions defined in the Scheme interpreter project:
validate_form, scheme_equalp, scheme_eval

def do_match_form(expressions, env):
"""Evaluate a match form.
>>> env = create_global_frame()
>>> do_match_form(read_line("('c ('a 1) ('b (+ 1 1)) ('c 3))"), env)
3
"""
validate_form(expressions, 1) # Ensures there's at least 1 operand
subject = _________

(a)
val = scheme_eval(subject, env)
expressions = expressions.rest
while _________:

(b)
pair = expressions.first

(c)
match_term = _________

(d)
if _________(val, match_term):

(e)
return scheme_eval(_________, env)

(f)
expressions = expressions.rest

Exam generated for <EMAILADDRESS> 30

i. (0.5 pt) Fill in blank (a)

expressions.first

ii. (1.0 pt) Fill in blank (b)

 expressions is not nil

expressions.rest is not nil

expressions.first

len(expressions) > 0

len(expressions) >= 0

iii. (1.0 pt) Fill in blank (c)

scheme_eval(subject, env)

scheme_eval(pair, env)

scheme_equal(expressions, val)

scheme_equal(pair, val)

validate_form(expressions, 2, 2)

 validate_form(pair, 2, 2)

iv. (1.5 pt) Fill in blank (d)

scheme_eval(pair.first, env)

v. (1.0 pt) Fill in blank (e)

scheme_eval

validate_form

 scheme_equalp

do_match_form

min

vi. (1.0 pt) Fill in blank (f)

pair.rest.first

Exam generated for <EMAILADDRESS> 31

(b) (3.0 points) Match Counter

Assume the interpreter supports the match special form and do_match_form is implemented correctly. Let
us consider interpreting the following expressions:

scm> (define op 'add)
op
scm> (match op
...> ('mul (* 1 2))
...> ('add (+ 1 2))
...> ('sub (- 1 2)))

The following questions relate to the previous match expression. Each clause is in context of the given
match expression.

i. (1.0 pt) How many times is scheme_eval called for just this clause of the given match special form:

('mul (* 1 2))

1

ii. (1.0 pt) How many times is scheme_eval called for just this clause of the given match special form:

('add (+ 1 2))

5

iii. (1.0 pt) How many times is scheme_eval called for just this clause of the given match special form:

('sub (- 1 2))

0

Exam generated for <EMAILADDRESS> 32

7. (9.0 points) Hills

(a) (9.0 points) Hill

Implement the generator function hill which takes in a positive integer n and returns a generator that
yields every subsequence of n where each digit is exactly 1 away from its adjacent digits. The order in
which numbers are yielded does not matter. Assume all digits in the number are unique.

def hill(n):
"""
Accepts a positive integer N, and returns a generator that
yields every subsequence of N where each digit is exactly 1
away from its adjacent digits.

>>> sorted(list(hill(354)))
[3, 4, 5, 34, 54]
>>> sorted(list(hill(246))) # individual digits are hills themselves
[2, 4, 6]
>>> sorted(list(hill(32451)))
[1, 2, 3, 4, 5, 21, 32, 34, 45, 321, 345]
"""

(a)
if n >= 10:

_________:
(b)

(c)
if _________ == 1:

(d)

(e)

i. (2.0 pt) Fill in blank (a).

yield n % 10

ii. (1.5 pt) Fill in blank (b).

for x in hill(n - 1)

 for x in hill(n // 10)

for x in range(n)

for x in range(n + 1)

while True

while n > 0

if n > 0

if n % 10

Exam generated for <EMAILADDRESS> 33

iii. (2.0 pt) Fill in blank (c).

yield x

iv. (1.5 pt) Fill in blank (d).

x // pow(10, n)

n // x

abs(x - n % 10)

abs(x // 10 - n % 10)

 abs(x % 10 - n % 10)

abs(n)

x % 10 - n // 10

v. (2.0 pt) Fill in blank (e).

yield x * 10 + n % 10

Exam generated for <EMAILADDRESS> 34

8. (10.0 points) List Methods

(a) (5.0 points) Pad

Implement pad which takes in a list s of length m, and adds el to the end of the list until there are exactly n
elements. If length m is greater than n, evaluate to the same list. Example: (pad '(1 2 3) 6 4) evaluates
to (1 2 3 4 4 4). (pad '(1 2 3) 0 5) evaluates to (1 2 3). You cannot use and, or, begin, cond,
or if in the blanks.

(define (pad s n el)
(cond

((= n 0) _________)
(a)

((null? s) (cons _________ _________))
(b) (c)

(else (cons _________ _________))))
(d) (e)

i. (0.5 pt) Fill in blank (a)

s

ii. (0.5 pt) Fill in blank (b)

s

(cdr s)

(car s)

 el

n

iii. (1.5 pt) Fill in blank (c)

(pad nil (- n 1) el)

iv. (0.5 pt) Fill in blank (d)

s

(cdr s)

 (car s)

el

n

v. (1.5 pt) Fill in blank (e)

(pad (cdr s) (- n 1) el)

Exam generated for <EMAILADDRESS> 35

(b) (5.0 points) Shorten

The list-concat procedure takes in a list a and a list b, and returns the result of appending each element
from list b to the end of a. Below is the implementation for reference:

(define (list-concat a b)
(if (null? a)
b
(cons (car a) (list-concat (cdr a) b))))

Implement shorten which takes in a list s of length m, and removes elements from the end of the list until
there are exactly n elements. If length m is less than n, return the same list. (shorten (list 1 2 3 4
5) 3) evaluates to (1 2 3). You must use the list-concat procedure defined previously. You cannot
use and, or, begin, cond, or if in the blanks.

(define (shorten s n)
(define (shorten-tail s n t)

(if _________
(a)

(b)

(shorten-tail (cdr s) (- n 1) _________)))
(c)

(shorten-tail s n nil))

i. (0.5 pt) Fill in blank (a)

 (or (null? s) (= n 0))

(and (null? s) (= n 0))

(and s (= n 0)

(null? s)

(= n 0)

(< n 0)

ii. (1.0 pt) Fill in blank (b)

t

iii. (1.0 pt) Fill in blank (c)

(list-concat t (list (car s)))

iv. (1.5 pt) What is the space complexity of shorten with respect n? Assume n < m.

θ(log(n))

θ(1)

 θ(n)

θ(n2)

θ(2n)

Exam generated for <EMAILADDRESS> 36

v. (1.5 pt) What is the time complexity of shorten with respect n? Assume n < m.

θ(log(n))

θ(1)

θ(n)

 θ(n2)

θ(2n)

Exam generated for <EMAILADDRESS> 37

9. (10.0 points) S QUBE L

(a) (10.0 points)

The (abridged version) of the table below is named ranks. It stores the best result that a competitor has
achieved in competition for each event in official competitive Rubik’s Cube speedsolving competitions. The
three columns have the following descriptions:

• personId: An identifier for each individual person in the ranks table. All rows are stored as a string
• eventId: The corresponding event of each row. 333 refers to regular 3x3x3 Cube speedsolving, while
333oh refers to 3x3x3 Cube speedsolving with one hand. All rows are stored as a string

• result: The result (in centiseconds) of each row. All rows are stored as an integer

personId	eventId	result
2018KHAN28	222	101
2017TSVE02	222	112
2022VISH01	222	113
...
2018WIDJ01	333	669
2013BALI01	333	670
2016OLZI01	333	670
...
2016SONG03	333oh	1276
2015WILS05	333oh	1276
2016SMUL01	333oh	1277
...

Write a query that outputs all competitors with a faster result in One-Handed solving (333oh) than
regular 3x3x3 speedsolving (333). Your query should also output the following:

• The personId corresponding to each result
• The fastest 3x3x3 Cube One Handed result in seconds, with a column name of 333oh_best
• The fastest 3x3x3 Cube result in seconds, with a column name of 333_best
• The output should be ordered in ascending order by the fastest One Handed result.

Your output will look similar to the following:

personId	333oh_best	333_best
2017TUNG13	9.28	9.35
2021TAKA01	14.38	18.07
2015HEER02	14.98	15.38
2013ZHAN31	16.9	19.03
...

You may assume that every row in the ranks table will have a valid result.

You may not use LIKE in your solution.

Hint: To convert centiseconds to seconds, you need to divide the column by 100.

SELECT _______, _______, _______
(a) (b) (c)

FROM _______ AS reg, _______ AS oh
(d) (e)

WHERE _______________
(f)

ORDER BY _______;
(g)

Exam generated for <EMAILADDRESS> 38

i. (1.0 pt) Fill in blank (a).

reg.personId

ii. (1.0 pt) Fill in blank (b).

oh.result / 1000 AS 333oh_best

iii. (1.0 pt) Fill in blank (c).

reg.result / 1000 AS 333_best

iv. (0.5 pt) Fill in blank (d).

ranks

v. (0.5 pt) Fill in blank (e).

ranks

vi. (5.0 pt) Fill in blank (f).

reg.personId = oh.personId AND reg.eventId = '333' AND oh.eventId =
'333oh' AND reg.result > oh.result

vii. (1.0 pt) Fill in blank (g).

oh.result

Exam generated for <EMAILADDRESS> 39

10. (3.0 points) Special Topics

(a) (1.0 pt) ComP(ile)ython

In CPython, what is the order of intermediate results when going from source code to output?

source->AST->output

source->bytecode->output

source->machine code->bytecode->output

source->AST->tokens->bytecode->output

 source->tokens->AST->bytecode->output

source->tokens->AST->machine code->bytecode->output

(b) (1.0 pt) BlAST OFF

Assume your query sequence is TACTGCGATA which encodes for the insulin gene.

What is displayed when you run the BLAST algorithm (like we did on the NCBI website) on your query
sequence and a database of 10 other insulin gene target sequences?

Sequence with the highest genetic similarity to the query sequence using local alignment

Sequence with the highest genetic similarity to the query sequence using global alignment

Sequence with the highest genetic similarity to the query sequence using local or global alignment

Highest genetic similarity of the query sequence with the target sequences using local alignment

Highest genetic similarity of the query sequence with the target sequences using global alignment

 Genetic similarities of the query sequence with all target sequences using local alignment

Genetic similarities of the query sequence with all target sequences using global alignment

Top 3 highest genetic similarities of the query sequence with target sequences using global alignment

(c) (1.0 pt) Pickle Tree

Given the Tree class on the Study Guide provided, select the option to fill in blank (a) the __reduce__
function that would be used by calling pickle.dumps(tree_obj):

def __reduce__(self):
return _________

(a)

 (self.__class__, (self.label, self.branches))

(__class__, (label, branches))

[self.__class__, [self.label, self.branches]]

[__class__, [label, branches]]

self

str(self)

repr(self)

Exam generated for <EMAILADDRESS> 40

11. (0.0 points) A+ Questions

(a) (0.0 points) A+ Levels

This A+ question is not worth any points. It can only affect your course grade if you have a high A and
might receive an A+. Finish the rest of the exam first!

Definition: The level of a list refers to how deeply nested it is. Example: (1) has a level of 1. ((2)) has
a level of 1. The inner list of (2) has a level of 2.

Implement levels that takes in a list s. It returns a new levelled list such that at each depth level L of
the list there are exactly L elements. If there are more than L elements. Keep only the first L elements. If
there are fewer than L elements. Add the depth level L as an element until there are exactly L elements.

You can use shorten and pad in your implementation. You cannot use and, or, begin, cond, or if in
the blanks. Examples:

scm> (levels '(((8 1) (4 9 8) ()))) ; add 3 at depth 3. Remove empty list at depth 2.
(((8 1 3) (4 9 8)))
scm> (levels '((()))) ; add 3s at depth 3. Add 2s at depth 2.
(((3 3 3) 2))

(define (levels s)
(define (helper s level)

(cond
((integer? s) _________)

(a)
((null? s) _________)

(b)
(else

(begin
(define first _________)

(c)
(define rest _________)

(d)
_________))))

(e)
(helper s 1))

Exam generated for <EMAILADDRESS> 41

i. (0.0 pt) Fill in blank (a)

s

ii. (0.0 pt) Fill in blank (b)

(pad s level level)

iii. (0.0 pt) Fill in blank (c)

(helper (car s) (+ level 1))

iv. (0.0 pt) Fill in blank (d)

(helper (cdr s) level)

v. (0.0 pt) Fill in blank (e)

(shorten (cons first rest) level)

Exam generated for <EMAILADDRESS> 42

(b) (0.0 points) A+ SQL

This A+ question is not worth any points. It can only affect your course grade if you have a high A and
might receive an A+. Finish the rest of the exam first!

You are given the following tables:

results

eventId	result	personName	personId
...
333oh	1272	Andrew Bae	2014BAEA01
333oh	1318	Justin Mallari	2010MALL01
333oh	1592	Eric Zhao	2010ZHAO19
...
444	2917	Sebastian Weyer	2010WEYE02
444	2995	Sebastian Weyer	2010WEYE02
444	2973	Feliks Zemdegs	2009ZEMD01
...
skewb	1205	Riley Woo	2007WOOR01
skewb	1327	Tiffany Chien	2012CHIE01
skewb	1347	Jeong-Soo Park	2014PARK03
...

persons

name	country	id
...
Barrett Maun	USA	2022MAUN01
Ben Yin	USA	2022YINB01
Bowen Wang	USA	2022WANG56
...

results is a table that has 4 columns:

• eventId: The corresponding event of each row. Similarly to the previous SQL question, 333oh refers
to 3x3x3 Cube speedsolving with one hand. All rows are stored as a string

• result: The result (in centiseconds) of each row. All rows are stored as an integer
• personName: The name for each individual person in the results table. All rows are stored as a
string

• personId: A unique identifier for each individual person in the results table. All rows are stored
as a string

persons is a table that has 3 columns:

• name: The name for each individual person in the persons table. All rows are stored as a string
• country: The country that a person represents in competition. All results are stored as a string
• id: A unique identifier for each individual person in the persons table. All results are stored as a
string

Assume that personId in results will always have a match for id in persons

Write a query that outputs the number of times that a person has achieved a result strictly under 10
seconds (1000 centiseconds) for the 333oh eventId. Your query should also output the following:

• The personName corresponding to each result.
• The personId corresponding to each result.
• The country that each person represents.
• The fastest 3x3x3 Cube One-Handed result that the corresponding competitor achieved in seconds,
with a column name of best_result

Exam generated for <EMAILADDRESS> 43

• The number of times that the corresponding competitor achieved a result under 10 seconds.
• The output should be sorted in descending order by the number of times someone has achieved a
result under 10 seconds.

• There should be 8 rows outputted.

Your output will look similar to the following:

personName	personId	country	best_result	num_times_sub_10
Max Park	2012PARK03	USA	8.76	63
Patrick Ponce	2012PONC02	USA	8.65	18
Luke Garrett	2017GARR05	USA	9.18	12
Dwyane Ramos	2019RAMO05	New Zealand	8.88	9
Sean Patrick Villanueva	2017VILL41	Philippines	9.13	8
Juliette Sébastien	2014SEBA01	France	9.23	7
Magnus Lensch	2019LENS01	Germany	9.33	6
Zhouheng Sun	2008SUNZ01	China	9.81	4

SELECT _______________
(a)

FROM _______, _______
(b) (c)

WHERE _______________
(d)

GROUP BY _______
(e)

ORDER BY _______
(f)

LIMIT _______;
(g)

i. (0.0 pt) Fill in blank (a).

personName, personId, country, min(result) / 100 AS best_result,
count(*) AS num_times

ii. (0.0 pt) Fill in blank (b).

results

iii. (0.0 pt) Fill in blank (c).

persons

Exam generated for <EMAILADDRESS> 44

iv. (0.0 pt) Fill in blank (d).

results.personId = persons.id AND eventId='333oh' AND best_result < 1000

v. (0.0 pt) Fill in blank (e).

personId

vi. (0.0 pt) Fill in blank (f).

count(*) DESC

vii. (0.0 pt) Fill in blank (g).

8

Exam generated for <EMAILADDRESS> 45

12. (0.0 points) Fun Question

(a) (0.0 pt) WWYD with the Link.rest of your summer. (draw '(a picture)). Alternatively, feel free
to draw a picture about 61A!

:)

Exam generated for <EMAILADDRESS> 46

No more questions.

