
CS 61A Structure and Interpretation of Computer Programs
Summer 2023 Midterm Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

Oski the Bear

(b) What is your student ID number?

123456789

(c) What is your @berkeley.edu email address?

oski@berkeley.edu

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Oski Bear

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) What Would Python Display

For each expression below, choose the correct option or write the output displayed by the interactive Python
interpreter when the expression is evaluated. The output may have multiple lines.

• If an error occurs, write “Error”, but include all output displayed before the error.
• If evaluation would run forever, write “Forever”.
• To display a function value, write “Function”.
• If the evaluated expression wouldn’t display anything, write “Nothing”. The interactive interpreter displays
the value of a successfully evaluated expression, unless it is None.

(a) i. (0.5 pt)

>>> (1 or 2) and (3 or 4)

True

False

0

1

2

 3

4

ii. (0.5 pt)

>>> ('Barbie' or 'Ken') * 2

'Barbie'

 'BarbieBarbie'

'Ken'

'KenKen'

'BarbieKen'

'KenBarbie'

'BarbieBarbieKenKen'

2

Error

Nothing

iii. (0.5 pt) For the rest of this question, assume the following code has been executed.

>>> it = iter([2, ['a', 'b'], 'c', 3])
>>> next(it)

2

Exam generated for <EMAILADDRESS> 4

iv. (0.5 pt)

>>> next(it)

['a', 'b']

v. (1.0 pt)

>>> list(it)

['c', 3]

vi. (1.0 pt)

>>> next(it)

Error

Exam generated for <EMAILADDRESS> 5

vii. (1.0 pt) For the rest of this question, assume the following code has been executed.

dreamhouse = 101
beach = lambda pink: pink(dreamhouse)
dreamhouse = 102

def is_even(n):
return n % 2 == 0

>>> beach(is_even)

 True

False

101

102

1

0

Function

Error

Nothing

viii. (1.0 pt)

>>> beach(dreamhouse)

True

False

101

1

0

Function

 Error

Nothing

Exam generated for <EMAILADDRESS> 6

ix. (1.0 pt)

>>> pink = beach(print)

True

False

101

 102

1

0

Function

Error

Nothing

x. (1.0 pt)

>>> pink

True

False

101

102

1

0

Function

Error

 Nothing

Exam generated for <EMAILADDRESS> 7

2. (10.0 points) The Fellowship of the List

Given the environment diagram and skeleton code, answer the questions below.

def form_fellowship(__1__):
def ring(__2__):

return ____3____
return ____4____

gandalf = form_fellowship(____5____)
sword = _____6_____
_____7_____ = _____8_____

(a) i. (1.0 pt) Fill in blank (1)

group

ii. (1.0 pt) Fill in blank (2)

adventurer

Exam generated for <EMAILADDRESS> 8

iii. (1.5 pt) Which of these could go in 3? (select all that apply)

2 group + adventurer

2 adventurer + group

2 group.extend(adventurer)

� group.extend([adventurer])

2 adventurer.extend(group)

2 adventurer.extend([group])

� group.append(adventurer)

2 group.append([adventurer])

2 adventurer.append(group)

2 adventurer.append([group])

2 group + adventurer[:]

2 group[:] + adventurer

iv. (1.0 pt) Fill in blank (4)

ring

v. (1.5 pt) Which of these could go in 5? (select one)

 ['Frodo']

'Frodo'

['Frodo', 'Aragorn']

'Aragorn'

['Frodo', 'Aragorn', None]

None

vi. (2.0 pt) Fill in blank (6). You may only make one call expression and may not use or, and, if, or
else.

gandalf("Aragorn")

vii. (1.0 pt) Fill in blank (7)

axe

Exam generated for <EMAILADDRESS> 9

viii. (1.0 pt) Which of these could go in 8? (select all that apply)

� gandalf(sword)

2 gandalf(sword.append(None))

2 gandalf(group)

2 gandalf(adventurer)

� gandalf(None)

2 sword('Aragorn')

2 sword(None)

Exam generated for <EMAILADDRESS> 10

3. (13.0 points) Digit Widgets

In this question, we will be testing your understanding of both iterative and recursive solutions.

Hint: pow(b, n) raises b to the power of n. For example, pow(10, 3) is 1000.

(a) (5.0 points)

Implement the recursive version of digit_widget which takes digit d. It returns a function with positive
integer parameter n that removes all instances of d from n. You may not use str or repr or [or]
or for.

def digit_widget(d):
"""
Given a digit D, returns a function which accepts positive integer N that removes
all instances of D from N. If there are no digits remaining in N, return 0.
>>> remove_5s = digit_widget(5)
>>> remove_5s(1234512345)
12341234
>>> remove_5s(55555)
0
>>> remove_0s = digit_widget(0)
>>> remove_0s(102001)
121
>>> remove_0s(900)
9
>>> remove_0s(0)
0
"""
def remove_digit(n):

if _________:
(a)

return _________
(b)

if n % 10 == _________:
(c)

return _________
(d)

return _________
(e)

return _________
(f)

i. (0.5 pt) Fill in blank (a).

n == d

 n == 0

n % 10 == 0

n > 0

n >= 0

n < 0

Exam generated for <EMAILADDRESS> 11

ii. (0.5 pt) Fill in blank (b)

 0

1

d

n - 1

pow(10, d)

pow(10, n)

iii. (0.5 pt) Fill in blank (c)

0

1

 d

n - 1

pow(10, d)

pow(10, n)

iv. (1.0 pt) Fill in blank (d)

remove_digit(n % d)

 remove_digit(n // 10)

remove_digit(n % 10)

remove_digit(n - 1)

remove_digit(n % pow(10, d))

remove_digit(n // pow(10, d))

v. (2.0 pt) Fill in blank (e).

remove_digit(n//10) * 10 + n % 10

vi. (0.5 pt) Fill in blank (f).

remove_digit

Exam generated for <EMAILADDRESS> 12

(b) (5.0 points)

Implement the iterative version of digit_widget, digit_widget_iter, which takes digit d. It returns a
function with positive integer parameter n that removes all instances of d from n. You may not use str
or repr or [or] or for.

def digit_widget_iter(d):
"""
Given a digit D, returns a function which accepts positive integer N that removes
all instances of D from N. If there are no digits remaining in N, return 0.
>>> remove_5s = digit_widget_iter(5)
>>> remove_5s(1234512345)
12341234
>>> remove_5s(55555)
0
>>> remove_0s = digit_widget_iter(0)
>>> remove_0s(102001)
121
>>> remove_0s(900)
9
>>> remove_0s(0)
0
"""
def remove_digit(n):

result, i = 0, 0
while _________:

(a)
if _________:

(b)
result += _________

(c)

(d)

(e)
return result

return _________
(f)

i. (0.5 pt) Fill in blank (a).

n == d

n == 0

n % 10 == 0

 n > 0

n >= 0

n < 0

Exam generated for <EMAILADDRESS> 13

ii. (0.5 pt) Fill in blank (b)

n % 10 == 0

n // 10 != 0

n % 10 == d

 n % 10 != d

n % pow(10, d) == 0

n // 10 == pow(10, d)

iii. (2.0 pt) Fill in blank (c)

pow(10, i) * n % 10

iv. (0.5 pt) Fill in blank (d).

n = n % pow(10, i)

i = pow(10, i)

 i += 1

n = n % 10

n = n // 10

n -= 1

v. (1.0 pt) Fill in blank (e).

n = n % pow(10, i)

i = pow(10, i)

i += 1

n = n % 10

 n = n // 10

n -= 1

vi. (0.5 pt) Fill in blank (f).

remove_digit

Exam generated for <EMAILADDRESS> 14

(c) (3.0 points)

Implement digit_machine, which takes a positive integer n. It returns n where all instances of 4 and
8 have been removed. You may not use str or repr or [or] or for. Assume digit_widget is
implemented correctly (and you may use it).

def digit_machine(n):
"""
Given an integer N, return a modified N such that all instances of 4 and 8 have been removed.
>>> digit_machine(484848)
0
>>> digit_machine(123456789)
1235679
>>> digit_machine(208)
20
"""
return _________

(a)

i. (3.0 pt) Fill in blank (a).

return digit_widget(4)(digit_widget(8)(n))

Exam generated for <EMAILADDRESS> 15

4. (8.0 points) Goatda

This question will test the debugging skills you’ve learned in the class so far. We have included an implementation
of the goatda function which accepts a single argument function lamb and a non-negative integer n. It returns a
single argument function that applies lamb to the argument n times. However, the included implementation
is buggy!

def goatda(lamb, n):
"""
Implement goatda which accepts LAMB, a single argument function, and N the number of times
to apply LAMB. Return a single argument function that applies LAMB to the argument N times.
>>> add3 = goatda(lambda x: x+1, 3)
>>> add3(10) # (((10 + 1) + 1) + 1)
13
>>> add3(2) # (((2 + 1) + 1) + 1)
5
>>> print2 = goatda(print, 2)
>>> print2("hi") # print(print("hi"))
hi
None
>>> identity = goatda(lambda x: x+3, 0) # The function is applied 0 times
>>> identity(0)
0
"""
if n == 0: # line 1

return lambda x: x # line 2
return lambda x: lamb(goatda(lamb, n-1)) # line 3

(a) After implementing goatda, we execute the following lines of code in the terminal.

>>> add3 = goatda(lambda x: x+1, 3)
>>> add3(10)

The call to add3(10) results in an error!

i. (2.0 pt) What kind of error does this result in?

RecursionError: too much recursion

 TypeError: unsupported operand type(s)

TypeError: 'NoneType' object is not callable

IndentationError

IndexError

NameError

Exam generated for <EMAILADDRESS> 16

ii. (2.0 pt) Let’s modify the code, so that it no longer errors. Select how to replace the 3 lines, so that
the function passes the doctests and no longer errors. Select No change if you do not want to modify
the line. Indentation will remain the same.

How would you modify line 1?

if n > 0:

if n < 0:

if n >= 0:

if n % 10 > 0:

if n % 10 >= 0:

if lamb(n) == 0:

if lamb(n):

 No change

iii. (2.0 pt) How would you modify line 2?

return lamb(n)

return n

return lambda x: n

return lambda x: 0

return lambda x: lamb(x)

return lambda x: lambda y: lamb(y)

 No change

iv. (2.0 pt) How would you modify line 3?

return goatda(lamb, lamb(n-1))

return lamb(goatda(lamb, n-1))

return lambda x: lamb(x) + goatda(lamb, n-1)

return lambda x: goatda(lamb(x), n-1)

 return lambda x: lamb(goatda(lamb, n-1)(x))

return lambda x: goatda(lamb, n-1)(n)

No change

Exam generated for <EMAILADDRESS> 17

5. (13.0 points) Sweetness Overload

(a) (3.0 points)

Implement donut_tower which takes in the number of donuts n and positive integer k. It returns the
number of layers one can fill using n donuts, given the smallest layer consists of k donuts and each
subsequent layers consists of one more donut than the previous one. For instance, if n is 16 and k is 2,
then you can create 4 layers (as shown below) using 14 donuts.

def donut_tower(n, k):
"""
Given non-zero numbers N and K, returns the number of donut layers
that can be formed using N donuts and K-donut smallest layer
>>> donut_tower(0, 3)
0
>>> donut_tower(1, 1)
1
>>> donut_tower(10, 2) # 2 + 3 + 4 = 9 donuts
3
>>> donut_tower(20, 3) # 3 + 4 + 5 + 6 = 18 donuts
4
"""
if _________:

(a)
return _________

(b)
else:

return 1 + _________
(c)

i. (1.0 pt) Fill in blank (a)

 n < k

n >= k

n > k

n == 1

n == 0

n < 1

Exam generated for <EMAILADDRESS> 18

ii. (1.0 pt) Fill in blank (b)

0

iii. (1.0 pt) Fill in blank (c)

max(donut_tower(n, k + 1), donut_tower(n - k, k))

donut_tower(n, k + 1)

 donut_tower(n - k, k + 1)

donut_tower(n - k, k)

donut_tower(n - k + 1, k)

donut_tower(n - 1, k)

Exam generated for <EMAILADDRESS> 19

(b) (4.0 points)

Implement alternating_tower, which takes a positive integer c, the number of cupcakes, positive integer
b, the number of brownies, and k, the size of the smallest layer that can hold k donuts. It returns the
maximum numbers of dessert layers that can be formed using brownies and cupcakes. Since those items
are smaller than donuts, each k-sized donut layer can hold twice as many cupcakes and thrice as many
brownies. Also, a dessert tower has alternating layers of brownies and cupcakes, but the first layer must
always consist of brownies. For instance, if b is 20, c is 20 and k is 2, then you can create a maximum
of 4 layers (as shown below) using 18 brownies and 16 cupcakes.

def alternating_tower(b, c, k):
"""
>>> alternating_tower(5, 4, 1) # 1st layer has 3 brownies, 2nd layer has 4 cupcakes
2
>>> alternating_tower(10, 15, 3) # 1st layer has 9 brownies, 2nd layer has 8 cupcakes
2
>>> alternating_tower(16, 6, 5) # 1st layer has 15 brownies
1
"""
def helper(b_item, c_item, curr_layer, is_cupcakes):

if _________:
(a)

return 0
elif is_cupcakes:

return _________
(b)

else:
return 1 + helper(_________, c_item, curr_layer + 1, not is_cupcakes)

(c)
return helper(_________, c, k + 1, True)

(d)

Exam generated for <EMAILADDRESS> 20

i. (1.0 pt) Fill in blank (a)

 b_item < 0 or c_item < 0

b_item

b_item == 0 or c_item == 0

b_item > 0 or c_item > 0

c_item

b_item < 0 and c_item < 0

c_item * 2 == k or b_item * 3 == k

b_item * 3 <= k

ii. (1.0 pt) Fill in blank (b)

helper(b_item - 3 * curr_layer, c_item, curr_layer + 1, is_cupcakes) - 1

1 + helper(b_item - 3 * curr_layer, c_item - 2 * curr_layer, curr_layer - 1, not is_cupcakes)

 1 + helper(b_item, c_item - 2 * curr_layer, curr_layer + 1, not is_cupcakes)

helper(b_item - 3 * curr_layer, c_item - 2 * curr_layer, curr_layer - 1, is_cupcakes)

helper(b_item, b_item - 2 * curr_layer, curr_layer + 1, not is_cupcakes)

helper(b_item - 3 * curr_layer, c_item, curr_layer + 1, not is_cupcakes) + helper(b_item,
c_item - 2 * curr_layer, curr_layer + 1, is_cupcakes)

iii. (1.0 pt) Fill in blank (c)

b_item

b_item - 3 * (curr_layer + 1)

 b_item - 3 * curr_layer

3 * b_item

b_item + c_item * 3 * curr_layer

b_item // 3 * (curr_layer + 1)

b_item // 3 * curr_layer

b_item - 3 // curr_layer

iv. (1.0 pt) Fill in blank (d)

b - 3 * k

Exam generated for <EMAILADDRESS> 21

(c) (6.0 points)

Implement sweetest_tower, which takes a positive integer c, the number of cupcakes, positive integer
b, the number of brownies, and k, the size of the smallest layer that can hold k donuts. It returns the
maximum number of dessert layers that can be formed using brownies and cupcakes. As previously stated,
since those items are smaller than donuts, each k-sized donut layer can hold twice as many cupcakes and
thrice as many brownies. Unlike alternating_tower, layers can be in any order.

def sweetest_tower(b, c, k):
"""
>>> sweetest_tower(0, 2, 1) # 1st layer with 2 cupcakes
1
>>> sweetest_tower(5, 4, 4)
0
>>> sweetest_tower(17, 19, 3) # layer 1 has 6 cupcakes, 2nd has 8 cupcakes, 3rd has 15 brownies
3
>>> sweetest_tower(30, 8, 4) # 1st layer has 12 brownies, 2nd has 15 brownies
2
"""
with_brownies, with_cupcakes = 0,0
if _________:

(a)
with_brownies = _________

(b)
if _________:

(c)
with_cupcakes = _________

(d)
return _________(with_brownies, with_cupcakes)

(e)

i. (1.0 pt) Fill in blank (a)

 b >= 3 * k

b > 3 * k

b

b == 3 * k

b > c

b // 3 < k

b // 3 == k

b >= 0

Exam generated for <EMAILADDRESS> 22

ii. (1.0 pt) Fill in blank (b)

1 + sweetest_tower(b // 3 - k, c, k - 1)

sweetest_tower(b - 3 * k, c, k + 1)

 1 + sweetest_tower(b - 3 * k, c, k + 1)

sweetest_tower(b - 3 * k, c, k - 1)

3 * sweetest_tower(b, c - 2 * k, k + 1)

3 + sweetest_tower(b, c - 2 * k, k + 1)

sweetest_tower(b - 3 // k, c - 2 * k, k + 1)

iii. (1.0 pt) Fill in blank (c)

c >= 2 * k

iv. (1.0 pt) Fill in blank (d)

1 + sweetest_tower(b, c - 2*k, k + 1)

v. (1.0 pt) Fill in blank (e)

max

Exam generated for <EMAILADDRESS> 23

6. (12.0 points) All Treeils Lead to Rome

Definition: A Treeil is a tree where exactly one of the child node(s) of each non-leaf node has a label equal to
the label of the node. Alternatively, a treeil is a tree where every node has a singular path from the node to a
leaf consisting entirely of nodes with the same label. Here is an example of a valid treeil:

(a) (7.0 points) Treeil Trial

Implement is_treeil which takes in a tree t and determines whether t is a treeil.

def is_treeil(t):
"""
Returns whether a tree is a treeil. A treeil is a tree where exactly one of
the branches of each non-leaf node has a label equal to the label of the node.
>>> t1 = tree(1)
>>> is_treeil(t1)
True
>>> t2 = tree(1, [tree(2), tree(3)])
>>> is_treeil(t2)
False
>>> t3 = tree(1, [tree(1, [tree(1), tree(3)]), tree(2)])
>>> is_treeil(t3)
True
>>> t4 = tree(1, [tree(1, [tree(1), tree(1)]), tree(2)])
>>> is_treeil(t4)
False
>>> t5 = tree(2, [tree(3, [tree(1)]), tree(2, [tree(2)])])
>>> is_treeil(t5)
False
"""
if _________:

(a)
return True

else:
match_one = _________([b for b in branches(t) if _________]) == 1

(b) (c)
return _________ and _________([_________ for b in branches(t)])

(d) (e) (f)

Exam generated for <EMAILADDRESS> 24

i. (1.0 pt) Fill in blank (a). Select all that apply.

2 True

2 False

� is_leaf(t)

2 branches(t)

� not branches(t)

2 label(t)

2 not label(t)

� branches(t) == []

ii. (1.0 pt) Fill in blank (b).

sum

max

min

 len

any

all

iii. (2.0 pt) Fill in blank (c).

label(t) == label(b)

iv. (1.0 pt) Fill in blank (d).

match_one

v. (1.0 pt) Fill in blank (e).

sum

max

min

len

any

 all

vi. (1.0 pt) Fill in blank (f).

is_treeil(b)

Exam generated for <EMAILADDRESS> 25

(b) (5.0 points) Treeil Trail

Implement max_treeil which takes in a tree t and determines the highest number of nodes in a treeil
that is a subtree of t. You may assume is_treeil is implemented correctly from the previous question.
The following diagram displays a tree t, which is not a treeil. The treeil subtree of t with the highest
number of nodes is highlighted. Calling max_treeil on this tree t should give a result of 4.

def max_treeil(t):
"""
Given a tree (that is not necessarily a treeil), returns
the highest number of nodes in a treeil in the tree.
>>> t1 = tree(1)
>>> max_treeil(t1)
1
>>> t2 = tree(1, [tree(2), tree(3)])
>>> max_treeil(t2)
1
>>> t3 = tree(1, [tree(1, [tree(1), tree(3)]), tree(2)])
>>> max_treeil(t3)
5
>>> t4 = tree(1, [tree(1, [tree(1), tree(1)]), tree(2)])
>>> max_treeil(t4)
1
>>> t5 = tree(2, [tree(3, [tree(1)]), tree(2, [tree(2)])])
>>> max_treeil(t5)
2
"""
if _________:

(a)
return 1

elif _________:
(b)

return 1 + _________
(c)

else:
return max([_________ for b in branches(t)])

(d)

Exam generated for <EMAILADDRESS> 26

i. (1.0 pt) Fill in blank (a).

is_treeil(t)

not is_treeil(t)

 is_leaf(t)

is_treeil(t) or is_leaf(t)

not is_treeil(t) and is_leaf(t)

ii. (1.5 pt) Fill in blank (b).

is_treeil(t)

iii. (1.0 pt) Fill in blank (c).

max([max_treeil(b) for b in branches(t)])

len([max_treeil(b) for b in branches(t)])

 sum([max_treeil(b) for b in branches(t)])

sum([b for b in branches(t) if is_treeil(b)])

len([b for b in branches(t) if is_treeil(b)])

iv. (1.5 pt) Fill in blank (d).

max_treeil(b)

Exam generated for <EMAILADDRESS> 27

(c) (0.0 points) Treeil Treeatment (A+ Question)

This A+ question is not worth any points. This can only affect your course grade if you
have a high A and might receive an A+. Finish the rest of the exam first!

Implement make_treeil which takes in a non-negative integer n and returns a treeil of depth n. Each
node of the treeil has exactly one more child than its parent node. The first branch of a node will have
value equal to its parent. Subsequent branches will have a label of exactly one more than the previous
branch. The root has a label of 0 and has exactly two children for a tree of depth 1. Here’s an example of
a treeil of depth 2.

def make_treeil(n):
"""
Returns a treeil of depth n where each node has one more child than its parent.
The first branch of a node will have label equal to its parent with subsequent
branches having label of exactly one more than the previous branch.
>>> t2 = make_treeil(2)
>>> print_tree(t2)
0

0
0
1
2

1
1
2
3

"""
def treeil_tracker(k, parent):

if n == k:
return tree(parent)

return _________
(a)

return treeil_tracker(0, 0)

i. (0.0 pt) Fill in blank (a).

tree(parent, [treeil_tracker(k+1, i) for i in range(parent,
parent+k+2)])

Exam generated for <EMAILADDRESS> 28

No more questions.

