
CS 61A Structure and Interpretation of Computer Programs
Summer 2024 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries: You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Name and SID of the person to your left (or N/A).

(e) Name and SID of the person to your right (or N/A).

(f) Sign your name to confirm that all work on this exam will be your own.

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) Phrase Phonetics

Assume the following code has been executed. No error occurs when executing this code block.

phrases = ['sweet', 'dreams', 'good', 'night', '!']

def crowdstrike():
while phrases:

yield phrases.pop()

i1 = iter(phrases)
i2 = iter(phrases[1:])

What Would Python Display? Write the output displayed by evaluating each expression below.

• If an error occurs, write "Error", but include all output displayed before the error.
• If evaluation would run forever, write "Forever".
• To display an iterator object, write "Iterator".
• To display a generator object, write "Generator".

Assume the expressions are evaluated in order in the same interactive session, and so evaluating an earlier
expression may affect the result of a later one.

Hint: Draw it out!

(a) (1.0 pt)

>>> next(i1) + next(i2)

(b) (1.0 pt)

>>> phrases.insert(1, 'question')

>>> next(i2) + next(i1)

(c) (2.0 pt)

>>> c = crowdstrike()

>>> next(i2) + next(i1) + next(c)

Exam generated for <EMAILADDRESS> 4

(d) (2.0 pt)

>>> list(c)

(e) (2.0 pt)

print(next(i2)) or print(next(i1))

Exam generated for <EMAILADDRESS> 5

2. (8.0 points) Sweet Diadreams

Draw the environment diagram for the code block below and then answer the questions that follow. Your
diagram will not be graded.

If an error occurs, answer the following questions according to the environment diagram you drew up until the
error.

def sweet(x, y):

def dreams(z, f):
return f(z)

while x + y > 0:
y = y - dreams(x + 2, lambda x: x - y)

return x + y

a = 1
b = 2
a = sweet(a, b)

Blank Space for Diagram:

Exam generated for <EMAILADDRESS> 6

(a) (2.0 pt) What is the value of a in Global?

(b) (1.0 pt) What is the return value of f2?

(c) (1.0 pt) What is the return value of f3?

(d) (1.0 pt) What is the return value of f4?

(e) (1.0 pt) What is the return value of f5?

(f) (1.0 pt) Which frame is the parent frame of the lambda function? Note: These options may not
cover every frame that is opened.

Global

f1

f2

f3

None of the above.

(g) (1.0 pt) How many times is dreams called?

0

1

2

3

4 or more

Exam generated for <EMAILADDRESS> 7

3. (10.0 points) Movie Theater Seating

Laryn, Raymond, and Charlotte want to watch a movie in theaters together but can’t figure out how to seat
themselves.

Implement movie_seating, a function that takes in a list of strings, people, and a list of integers, seats.
movie_seating returns a list of lists of all the possible ways to arrange the people amongst the open seats. In
order to be considered a valid seating arrangement, all people must have a seat.

A seat with a value 0 is open. A seat with a value -1 is not open. The arrangements can be returned in any
order.

Hint: Use remove_person, which takes in a list of strings people (representing people) and a string to_remove
(representing a person to remove). This function returns a new list that includes all the people from the original
list except the specified person to remove.

def remove_person(people, to_remove):
return [person for person in people if person != to_remove]

def movie_seating(people, seats):
"""
>>> movie_seating(['L', 'R'], [0, 0])
[['L', 'R'], ['R', 'L']]
>>> movie_seating(['L', 'C'], [0, -1, 0])
[['L', -1, 'C'], ['C', -1, 'L']]
>>> movie_seating(['L', 'R', 'C'], [0, -1, 0])
[]
>>> movie_seating(['L', 'R', 'C'], [0, 0, 0])
[['L', 'R', 'C'], ['L', 'C', 'R'], ['R', 'L', 'C'],
['R', 'C', 'L'], ['C', 'L', 'R'], ['C', 'R', 'L']]
>>> movie_seating(['R', 'C'], [0, 0, 0])
[['R', 'C', 0], ['R', 0, 'C'], ['C', 'R', 0], ['C', 0, 'R'],
[0, 'R', 'C'], [0, 'C', 'R']]
"""

if not seats and people:

return []

if not people:

return [seats]

skip_first_seat = __________
(a)

if seats[0] == -1:

return [__________ for arrangement in skip_first_seat]
(b)

ways = []

for choice in people:

use_first_seat = __________
(c)

ways.__________([__________ for arrangement in use_first_seat])
(d) (e)

ways.__________([__________ for arrangement in skip_first_seat])

Exam generated for <EMAILADDRESS> 8

(f) (g)
return ways

(a) (2.0 pt) Fill in blank (a).

(b) (1.0 pt) Fill in blank (b).

(c) (3.0 pt) Fill in blank (c).

(d) (1.0 pt) Fill in blank (d).

append

extend

pop

remove

insert

(e) (1.0 pt) Fill in blank (e).

(f) (1.0 pt) Fill in blank (f).

append

extend

pop

remove

insert

(g) (1.0 pt) Fill in blank (g).

Exam generated for <EMAILADDRESS> 9

4. (11.0 points) Linked Max Composite Value Path

Implement link_path_tree which takes in a Tree object, t, and an integer, val. The labels of t are one-
argument functions that take in an integer and return an integer. link_path_tree should mutate t such that
each label of t is a Linked List containing a path from the current node to the leaf with maximal "composite
value".

For a node n, the "composite value" of n is the result of successively passing val through each one-argument
function in the path from the root to n. For example, if the path from root to n consists of 3 functions, f –> g
–> h where f is the original label of the root node and h is the original label of n, the "composite value" of n is
h(g(f(val))).

After link_path_tree finishes executing, the label of each n should be updated to be a Linked List where the
first value is the "composite value" of n, and the rest of the Linked List is the path from n to the leaf in the
subtree rooted at n with maximal "composite value".

Hint: Use get_tail. get_tail takes in a Linked List, lnk, and returns the value in the last Link. lnk must
have at least one Link.

def get_tail(lnk):
"""
>>> get_tail(Link(1))
1
>>> get_tail(Link(1, Link(2)))
2
"""

while lnk.rest is not Link.empty:
lnk = lnk.rest

return lnk.first

Here is a visualization of one of the doctests.

Exam generated for <EMAILADDRESS> 10

def link_path_tree(t, val):
"""
>>> t = Tree(lambda x: x + 1, [Tree(lambda x: x + 2), Tree(lambda x: x + 3)])
>>> link_path_tree(t, 0)
>>> t # the path with maximal composite value starts from the root
and ends at the second branch of the root
Tree(Link(1, Link(4)), [Tree(Link(3)), Tree(Link(4))])
>>> t.label.rest is t.branches[1].label
True
>>> t2 = Tree(lambda x: x + 1, [Tree(lambda x: -x, [Tree(lambda x: x + 5),
Tree(lambda x: x + 111)]), Tree(lambda x: x ** 2)])
>>> link_path_tree(t2, 9)
>>> t2
Tree(Link(10, Link(-10, Link(101))), [Tree(Link(-10, Link(101)), [Tree(Link(-5)),
Tree(Link(101))]), Tree(Link(100))])
>>> t2.label.rest is t2.branches[0].label
True
>>> t2.label.rest.rest is t2.branches[0].branches[1].label
True
"""

applied = __________
(a)

if t.is_leaf():

t.label = __________(applied)
(b)

else:
for b in t.branches:

(c)

t.label = __________(__________, max(__________, key=__________))
(d) (e) (f) (g)

(a) (1.0 pt) Fill in blank (a).

(b) (1.0 pt) Fill in blank (b).

(c) (2.0 pt) Fill in blank (c).

Exam generated for <EMAILADDRESS> 11

(d) (1.0 pt) Fill in blank (d).

(e) (1.0 pt) Fill in blank (e).

(f) (3.0 pt) Fill in blank (f). Hint: Use a list comprehension.

(g) (2.0 pt) Fill in blank (g).

Exam generated for <EMAILADDRESS> 12

5. (21.0 points) CS 61A Web Browser

You are a talented web developer for CS 61A Inc. and have been tasked with modeling a web browser with
object-oriented programming in Python. Fill out the classes below to satisfy the class descriptions and doctests.

(a) (7.0 points) Browser

Browser’s can visit pages which are represented as strings. Browser’s store their browsing history of visited
pages in a Linked List so that when str is called on a Browser instance, the entire history of visited
webpages can be displayed in order of most recently visited to least recently visited. Browser’s can also go
back one webpage at a time, removing the most recently visited page from the browsing history each time.

The visit and back methods additionally return a zero-argument “undo” function that undoes the last
action performed (either visiting or going back). “undo” functions themselves also return another “undo”
function. Undoing an “undo” results in a net-zero effect (e.g., visiting a page, undoing the visit, then
undoing the “undo” is the same as just visiting the page). Implement the Browser class.

class Browser:
"""
>>> browser = Browser()
>>> print(browser)

>>> _ = browser.visit('cs61a.org')
>>> _ = browser.visit('oh.cs61a.org')
>>> print(browser)
oh.cs61a.org<-cs61a.org
>>> undo = browser.back()
>>> print(browser)
cs61a.org
>>> undo = undo()
>>> print(browser)
oh.cs61a.org<-cs61a.org
>>> undo = undo()
>>> print(browser)
cs61a.org
>>> _ = undo()() # undo'ing an undo cancels it out and does nothing
>>> print(browser)
cs61a.org
"""

def __init__(self):
self.browsing_history = Link.empty

def visit(self, page):
self.browsing_history = __________

(a)
return __________

(b)
def back(self):

page = self.browsing_history.first
self.browsing_history = __________

(c)
return __________

(d)

Exam generated for <EMAILADDRESS> 13

def __str__(self):
display = ''
head = self.browsing_history
while head is not Link.empty:

if __________ is not Link.empty:
(e)

display += __________
(f)

else:
display += __________

(g)
head = head.rest

return display

i. (1.0 pt) Fill in blank (a).

ii. (1.0 pt) Fill in blank (b).

iii. (1.0 pt) Fill in blank (c).

iv. (1.0 pt) Fill in blank (d).

v. (1.0 pt) Fill in blank (e).

head

head.rest

head.rest.rest

self.browsing_history

self.browsing_history.rest

self.browsing_history.rest.rest

vi. (1.0 pt) Fill in blank (f).

Exam generated for <EMAILADDRESS> 14

vii. (1.0 pt) Fill in blank (g).

Exam generated for <EMAILADDRESS> 15

(b) (4.0 points) Chrome

Chrome‘s are Browser’s that always begin their browsing from ’google.com’. Additionally, Chrome’s can
interleave their browsing history with another browser, resulting in both browsers sharing the same
browsing history that alternates between the webpages in each individual browser’s original browsing
history. Interleave operations cannot be undone. Implement the Chrome class.

class Chrome(Browser):
"""
>>> browser = Chrome()
>>> _ = browser.visit('cs61a.org')
>>> _ = browser.visit('tutor.cs61a.org')
>>> _ = browser.visit('go.cs61a.org')
>>> browser2 = Chrome()
>>> _ = browser2.visit('cs61a.org')
>>> _ = browser2.visit('sections.cs61a.org')
>>> _ = browser2.visit('code.cs61a.org')
>>> _ = browser2.visit('oh.cs61a.org')
>>> print(browser)
go.cs61a.org<-tutor.cs61a.org<-cs61a.org<-google.com
>>> print(browser2)
oh.cs61a.org<-code.cs61a.org<-sections.cs61a.org<-cs61a.org<-google.com
>>> browser.interleave_histories(browser2)
>>> print(browser)
go.cs61a.org<-oh.cs61a.org<-tutor.cs61a.org<-code.cs61a.org<-cs61a.org<-sections.cs61a.org
<-google.com<-cs61a.org<-google.com
>>> browser.browsing_history is browser2.browsing_history
True
"""

def __init__(self):
self.browsing_history = __________

(h)

def interleave_histories(self, other):
head = self.browsing_history
other_head = other.browsing_history
while head is not Link.empty and other_head is not Link.empty:

head.rest, head, other_head = __________, __________, __________
(i) (j) (k)

other.browsing_history = self.browsing_history

i. (1.0 pt) Fill in blank (h).

ii. (1.0 pt) Fill in blank (i).

Exam generated for <EMAILADDRESS> 16

iii. (1.0 pt) Fill in blank (j).

iv. (1.0 pt) Fill in blank (k).

Exam generated for <EMAILADDRESS> 17

(c) (10.0 points) MemorySaver

MemorySaver’s are Browser’s that have a limit to the number of webpages they can store in their browsing
history. Once their browsing history exceeds this limit, they begin removing webpages from their browsing
history, starting with the earliest visited pages. Implement the MemorySaver class.

class MemorySaver(__________):
(l)

"""
>>> browser = MemorySaver(2)
>>> _ = browser.visit('cs61a.org')
>>> _ = browser.visit('cs61bl.org')
>>> print(browser)
cs61bl.org<-cs61a.org
>>> _ = browser.visit('cs61c.org')
>>> print(browser)
cs61c.org<-cs61bl.org
>>> _ = browser.back()
>>> print(browser)
cs61bl.org
>>> undo = browser.visit('eecs70.org')
>>> print(browser)
eecs70.org<-cs61bl.org
>>> _ = undo()
>>> print(browser)
cs61bl.org
"""

def __init__(self, limit):

(m)
self.limit = limit
self.history_length = 0

def visit(self, page):
if self.history_length == self.limit:

head = self.browsing_history
while __________ is not Link.empty:

(n)
head = __________

(o)

(p)
else:

self.history_length = __________
(q)

return __________
(r)

def back(self):

(s)
return __________

(t)

Exam generated for <EMAILADDRESS> 18

i. (1.0 pt) Fill in blank (l).

ii. (2.0 pt) Fill in blank (m).

2 Browser.__init__()

2 Browser.__init__(self)

2 Browser.__init__(self, limit)

2 Chrome.__init__()

2 Chrome.__init__(self)

2 Chrome.__init__(self, limit)

2 super().__init__()

2 super().__init__(self)

2 super().__init__(self, limit)

iii. (1.0 pt) Fill in blank (n).

head

head.rest

head.rest.rest

self.browsing_history

self.browsing_history.rest

self.browsing_history.rest.rest

iv. (1.0 pt) Fill in blank (o).

head

head.rest

head.rest.rest

self.browsing_history

self.browsing_history.rest

self.browsing_history.rest.rest

v. (1.0 pt) Fill in blank (p).

Exam generated for <EMAILADDRESS> 19

vi. (1.0 pt) Fill in blank (q).

vii. (1.0 pt) Fill in blank (r).

viii. (1.0 pt) Fill in blank (s).

ix. (1.0 pt) Fill in blank (t).

Exam generated for <EMAILADDRESS> 20

6. (16.0 points) Treequality

Help Scheme trees check for treequality!

(a) (2.0 points) all

all takes in a list, s, and returns #t if all the elements of the list are truth-y or if s has no elements.
Otherwise, it returns #f.

; doctests
scm> (all (list 0 1 2 3 4 5))
#t
scm> (all (list 0 1 2 3 (< 4 2) 5))
#f
scm> (all '())
#t

(define (all s)
(if (null? s)

#t
(and (car s) (all (cdr s)))

)
)

i. (2.0 pt) Is all tail recursive?

Yes, it is tail recursive.

No, it is not tail recursive.

Exam generated for <EMAILADDRESS> 21

(b) (5.0 points) zip

Implement zip which takes in two lists, s0 and s1, and returns a list of lists where the nested list at index
i contains exactly two elements: the element at index i in s0 and the element at index i in s1. If s0 and
s1 have different lengths, only zip together the first k elements where k is the length of the shorter list.

; doctests
scm> (zip '(1 2 3) '(-1 -2 -3))
((1 -1) (2 -2) (3 -3))
scm> (zip '(1 2 3) '(-1 -2 -3 -4 -5))
((1 -1) (2 -2) (3 -3))

(define (zip s0 s1)
(if __________

(c)
nil
(cons __________ (zip __________))

(d) (e)
)

)

i. (1.0 pt) Fill in blank (c).

ii. (1.0 pt) Fill in blank (d).

iii. (1.0 pt) Fill in blank (e).

iv. (2.0 pt) Is zip tail recursive?

Yes, it is tail recursive.

No, it is not tail recursive.

Exam generated for <EMAILADDRESS> 22

(c) (9.0 points) treequals?

Recall the tree Scheme data abstraction from lecture:

(define (tree label branches)
(cons label branches)

)

(define (label t) (car t))

(define (branches t) (cdr t))

(define (is-leaf t) (null? (branches t)))

Implement treequals?, a Scheme procedure that takes in two tree abstractions, t0 and t1, and returns
#t if they have the exact same tree structure and same label values and returns #f otherwise.

Reminder, all returns #t when called on a list with no elements.

; doctests
scm> (define t (tree 1 (list (tree 2 nil) (tree 3 nil))))
t
scm> (treequals? t (tree 1 (list (tree 2 nil) (tree 3 nil))))
#t
scm> (treequals? t (tree 1 (list (tree 3 nil) (tree 2 nil))))
#f
scm> (treequals? t (tree 1 (list (tree 3 nil) (tree 3 nil))))
#f
scm> (treequals? t (tree 1 (list (tree 2 nil) (tree 4 nil))))
#f
scm> (treequals? t (tree 1 (list (tree 2 nil) (tree 3 (list (tree 4 nil))))))
#f
scm> (treequals? t (tree 1 (list (tree 2 nil))))
#f

(define (treequals? t0 t1)
(cond

((not __________) #f)
(f)

((not __________) #f)
(g)

(else (all (map
(lambda (p) __________)

(h)
__________)

(i)
))

)
)

Exam generated for <EMAILADDRESS> 23

i. (2.0 pt) Fill in blank (f).

ii. (2.0 pt) Fill in blank (g). Hint: Use length.

iii. (3.0 pt) Fill in blank (h).

iv. (2.0 pt) Fill in blank (i). Hint: Use zip.

Exam generated for <EMAILADDRESS> 24

7. (8.0 points) Scheme Dictionary Abstraction

Implement a dictionary abstraction in Scheme. In this data abstraction, we represent a dictionary as a list
of lists where each nested list has exactly two elements: the first element is the key and the second element
is the value. make-dict is a zero-argument procedure that returns an empty dictionary abstraction and is
implemented for you already. There are two procedures you must implement:

(1) add-item takes in a dictionary abstraction, dict, a key, key, and a value, and adds a new entry pointing
from key to value at the end of the list. If key already exists as a key in dict, then the old key-value
pair should be removed and the new key-value pair should be added to the end of the list.

(2) get-item takes in a dictionary abstraction, dict, and a key, key, and returns the value associated with
key. If key does not exist in dict, get-item should error.

Hint: Use cadr, which is implemented for you below.

; doctests
scm> (define dict (make-dict))
dict
scm> (define dict (add-item dict 'a 'b))
dict
scm> dict
((a b))
scm> (get-item dict 'a)
b
scm> (define dict (add-item dict 'b 'c))
dict
scm> dict
((a b) (b c))
scm> (define dict (add-item dict 'a 'c))
dict
scm> dict
((b c) (a c))
scm> (get-item dict 'a)
c
scm> (get-item dict 'b)
c
scm> (get-item dict 'c)
Error

(define (cadr s) (car (cdr s)))

(define (make-dict) nil)

(define (add-item dict key value)
(__________ (filter (lambda (p) __________) dict) (list __________))

(a) (b) (c)
)

(define (get-item dict key)
(__________ (__________ (filter (lambda (p) __________) dict)))

(d) (e) (f)
)

Exam generated for <EMAILADDRESS> 25

(a) (1.0 pt) Fill in blank (a).

car

cdr

cadr

cons

list

append

map

(b) (1.0 pt) Fill in blank (b).

(c) (3.0 pt) Select all of the expressions below that could fill in blank (c). The options that use quotes or
quasiquotes are explicitly noted for clarity.

2 (cons key value)

2 (cons key (cons value nil))

2 (cons (cons key (cons value nil)) nil)

2 (list key value)

2 (list key (list value))

2 (cons key (list value))

2 (list (list key value))

2 `(key value) which uses quasiquote

2 `(,key ,value) which uses quasiquote

2 (`(,key ,value)) which uses quasiquote

2 `((,key ,value)) which uses quasiquote

2 (list `(,key ,value)) which uses quasiquote

2 '(key value) which uses quote

2 '((key value)) which uses quote

(d) (1.0 pt) Fill in blank (d).

car

cdr

cadr

cons

list

append

map

Exam generated for <EMAILADDRESS> 26

(e) (1.0 pt) Fill in blank (e).

car

cdr

cadr

cons

list

append

map

(f) (1.0 pt) Fill in blank (f).

Exam generated for <EMAILADDRESS> 27

8. (10.0 points) Team USA Basketball: The Sweet Dreams Team

The USA Basketball Men’s National Team is competing in the 2024 Olympics and needs your help to analyze
their players’ performances. Complete the SQL queries using the two tables below.

Hint: You may use SQL keywords in the blanks.

The box_scores table contains data on how many minutes they spent playing in one game as well as how many
points, rebounds, and assists each player got in that game. The nba_data table contains data on which National
Basketball Association (NBA) team each player plays for as well as which position each player plays.

box_scores:

+-------------------+---------+--------+----------+---------+
| name | minutes | points | rebounds | assists |
+-------------------+---------+--------+----------+---------+
LeBron James	20.4	14	4	4
Anthony Edwards	20.6	13	2	1
Stephen Curry	21.8	13	2	2
Anthony Davis	17.6	12	10	1
Joel Embiid	16.6	10	7	3
Jrue Holiday	17.8	8	4	3
Bam Adebayo	17.6	8	5	1
Devin Booker	20.0	7	2	1
Jayson Tatum	17.8	6	3	2
Micah Potter	2.5	3	0	0
Tyrese Haliburton	14.8	2	2	3
Derrick White	11.3	1	2	2
+-------------------+---------+--------+----------+---------+

nba_data:

+-------------------+--------------+----------+
| name | nba_team | position |
+-------------------+--------------+----------+
LeBron James	Lakers	Forward
Anthony Edwards	Timberwolves	Guard
Stephen Curry	Warriors	Guard
Anthony Davis	Lakers	Center
Joel Embiid	Sixers	Center
Jrue Holiday	Celtics	Guard
Bam Adebayo	Heat	Center
Devin Booker	Suns	Guard
Jayson Tatum	Celtics	Forward
Micah Potter	Jazz	Center
Tyrese Haliburton	Pacers	Guard
Derrick White	Celtics	Guard
+-------------------+--------------+----------+

Exam generated for <EMAILADDRESS> 28

(a) (2.0 points) Points-Per-Minute

Write a SQL query that returns the names of the top 5 players with the most points-per-minute (PPM)
who played for at least 5 minutes in order from highest PPM to lowest PPM. PPM is calculated as points
divided by minutes.

-- EXPECTED OUTPUT:
-- LeBron James
-- Anthony Davis
-- Anthony Edwards
-- Joel Embiid
-- Stephen Curry

SELECT name FROM __________;
(a)

i. (2.0 pt) Fill in blank (a).

Exam generated for <EMAILADDRESS> 29

(b) (4.0 points) More Rebounds = More Points?

Write a SQL query that returns the names of NBA teams and average number of points scored by
players that play for that NBA team in order from most average rebounds to least average rebounds for
the NBA teams that have a total of 5 or more rebounds across all their players. Only players who played
for at least 5 minutes should be considered in these calculations.

-- EXPECTED OUTPUT:
-- Sixers|10.0
-- Lakers|13.0
-- Heat|8.0
-- Celtics|5.0

SELECT __________ FROM __________ WHERE __________ GROUP BY __________ ORDER BY __________;
(b) (c) (d) (e) (f)

i. (1.0 pt) Fill in blank (b).

ii. (0.5 pt) Fill in blank (c).

box_scores

nba_data

box_scores AS b1, box_scores AS b2

nba_data AS n1, nba_data AS n2

box_scores AS b, nba_data AS n

iii. (1.0 pt) Fill in blank (d).

iv. (0.5 pt) Fill in blank (e).

v. (1.0 pt) Fill in blank (f).

Exam generated for <EMAILADDRESS> 30

(c) (4.0 points) Assists-Per-Minute

Write a SQL query that returns each position, the name of the one player with the most assists-per-minute
(APM) in that position, and that player’s APM value in order from highest APM to lowest APM. APM
is calculated as assists divided by minutes. Only players who played for at least 5 minutes should be
considered in these calculations.

-- EXPECTED OUTPUT:
-- Guard|Tyrese Haliburton|0.2027027027027027
-- Forward|LeBron James|0.19607843137254904
-- Center|Joel Embiid|0.18072289156626503

SELECT __________ FROM __________ WHERE __________ GROUP BY __________ ORDER BY __________;
(g) (h) (i) (j) (k)

i. (1.0 pt) Fill in blank (g).

ii. (0.5 pt) Fill in blank (h).

box_scores

nba_data

box_scores AS b1, box_scores AS b2

nba_data AS n1, nba_data AS n2

box_scores AS b, nba_data AS n

iii. (1.0 pt) Fill in blank (i).

iv. (0.5 pt) Fill in blank (j).

v. (1.0 pt) Fill in blank (k).

Exam generated for <EMAILADDRESS> 31

9. (0.0 points) Just for Fun

This is not for points and will not be graded.

(a) Optional: Draw something that encapsulates your summer!

Exam generated for <EMAILADDRESS> 32

No more questions.

