
CS 61A Structure and Interpretation of Computer Programs
Summer 2025 Final Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (3.0 points) I Wish I Was Special

(a) (1.0 pt) CS Theory

What does NP stand for?

Non-computable Problem

Not Polynomial

Non-decidable Problem

 Non-deterministic Polynomial

(b) (1.0 pt) Computational Biology

What is the Central Dogma of Biology?

DNA is transcribed into proteins, which is then translated into RNA.

 DNA is transcribed into RNA, which is then translated into proteins.

DNA is translated into proteins, which is then transcribed into RNA.

DNA is translated into RNA, which is then transcribed into proteins.

(c) (1.0 pt) AI Safety

What is outer misalignment?

Model learns wrong goal through looking at data

Model tricks user into thinking that they achieved their goal

 Whatever goals we specify doesn’t match our true intended goals

Unequal base rates between groups can lead to disparities in false positives and false negatives

Exam generated for <EMAILADDRESS> 4

2. (5.0 points) What Would Python Display?

Assume the code below has been executed.

def box():
items = [range(2, 8), ([[3, 5], [7, 11]], lambda s, t: t + s), 10]
for s in items:

yield iter(s)

def search(s):
if next(s) != 10:

find = list(next(s))
found = find[1]
yield from found(find[0][0], find[0][1])

Write the output that would be displayed by printing the result of each expression.

• If an iterator object is returned, write ITERATOR.
• If an error occurs, write ERROR.

Each expression below should be evaluated independently of previously-evaluated expressions. For example, a
call to next() in blank (a) will not affect blank (b).

(a) (1.0 pt) list(filter(lambda x: x % 2 == 0, next(box())))

[2, 4, 6]

(b) (1.0 pt) next(box())

ITERATOR

(c) (2.0 pt) list(search(box()))

ITERATOR

ERROR

[2, 3, 4, 5, 6, 7, 8]

[3, 5, 7, 11]

 [7, 11, 3, 5]

8

[3, 7]

[5, 11]

(d) (1.0 pt) list(search(next(next(box()))))

ERROR

Exam generated for <EMAILADDRESS> 5

3. (7.0 points) Balls

Having been inspired by CS 70, Chris and Cedric are playing a game where there are n balls in a bin. The
game works as follows:

• Players take alternating turns.
• At every turn, a player can choose 1 to m balls to remove from the bin. If there are fewer than m balls
currently in the bin, players can remove at most the number of current balls in the bin.

• A player wins if they remove the last ball from the bin.
– i.e., A player loses if it’s their turn and there’s no more balls (the opponent removed the last ball).

Assuming Chris goes first and Cedric goes second, fill out num_ways to count the number of ways Chris can win.
In other words, Chris is player 0 and Cedric is player 1.

def num_ways(n, m):
"""
Players take turns removing 1 to m balls. Return the number of ways Chris can win by
removing the last ball on his turn.

>>> num_ways(1, 1)
1
>>> num_ways(2, 1)
0
>>> num_ways(4, 2)
3
>>> num_ways(10, 3)
137
"""
def helper(player, balls):

if player == 1 and _______:
(a)

return 1
if _______:

(b)
return 0

return _______([helper(_______, _______) _______])
(c) (d) (e) (f)

return helper(0, n)

(a) (1.0 pt) Fill in blank (a).

balls == 0

(b) (1.0 pt) Fill in blank (b).

 balls <= 0

balls == 0

helper(player, balls - m)

n < m

Exam generated for <EMAILADDRESS> 6

(c) (1.0 pt) Fill in blank (c).

 sum

any

all

max

(d) (1.0 pt) Fill in blank (d). You may not use if or not.

1 - player

(e) (1.0 pt) Fill in blank (e).

balls - i

(f) (1.0 pt) Fill in blank (f).

for i in range(m)

 for i in range(1, m + 1)

for i in range(m) if player == 0

for i in range(1, m + 1) if player == 0

(g) (1.0 pt) What is the order of growth of the time it takes to evaluate bins(n) in terms of positive integer
n?

def bins(n):
if n == 1:

return 1
if n < 1:

return 0

res = 0
for i in range(1, 5):

res *= bins(n-i)
return res

 exponential

quadratic

linear

logarithmic

constant

Exam generated for <EMAILADDRESS> 7

4. (9.0 points) Valid Triel

You are given a list of strings, banned, and a tree, t, in which each node contains a letter, and paths from root
to leaf create strings. Remove leaf nodes that cause a path to form a banned string. Your final tree should
not contain any paths that form banned strings. Assume all nodes contain valid characters and the root is
non-empty and its character is not a banned string.

def valid_triel(banned, t):
"""
Mutate the tree by removing leaf nodes such that it contains no banned strings.
"""
def helper(t, word):

for b in _______:
(a)

if not _______:
(b)

(c)

if _______ and _______:
(d) (e)

return False
return True

helper(t, t.label)

Exam generated for <EMAILADDRESS> 8

(a) (2.0 pt) Fill in blank (a).

t.branches[:]

(b) (2.0 pt) Fill in blank (b). You may not use and or or.

helper(b, word + b.label)

(c) (1.0 pt) Fill in blank (c).

 t.branches.remove(b)

t.branches.pop()

helper(b, word)

helper(b, word + b.label)

(d) (2.0 pt) Fill in blank (d). Select all that apply.

� t.is_leaf()

2 not t.is_leaf()

2 t.branches

� not t.branches

2 t.label in banned

2 t.label not in banned

(e) (2.0 pt) Fill in blank (e).

word in banned

Exam generated for <EMAILADDRESS> 9

5. (14.0 points) CS 61A Text Editor

A text editor can be implemented as a Linked List of characters. A character is a string of length 1.

For each subpart, you may assume all the previous subparts have been implemented correctly. For example,
when working on part (c), you may assume that parts (a) and (b) have been implemented correctly.

link_from_program is implemented for you. link_from_program takes in a string, program, and returns a
Linked List where each element of the Linked List is a character of program. Assume it is implemented correctly
and you may use it in any subpart of this problem.

def link_from_program(program):
"""
>>> s = link_from_program('print("hello")')
>>> print(s)
<p r i n t (" h e l l o ")>
"""
IMPLEMENTATION OMITTED

(a) (5.0 points)

Implement find, which takes in a Linked List of characters, s, and a string val and returns the index of
the first occurrence of val in s. If val does not exist in s, return float('inf'). Assume len(val) >=
1. You can assume the characters of val will appear only consecutively in s, or not at all.

def find(s, val):
"""Assume len(val) >= 1. Return the index of the first occurrence of val
>>> s = link_from_program('print("pal")')
>>> print(s)
<p r i n t (" p a l ")>
>>> find(s, 'pal')
7
>>> find(s, 'pals')
inf
>>> find(s, 'p')
0
>>> find(s, '"p')
6
>>> find(s, 'print("pal")')
0
"""
if s is Link.empty:

return float('inf')
if s.first == val[0]:

if len(val) == 1:
return _______

(a)
else:

return _______(find(s.rest, _______), 1 + find(s.rest, _______))
(b) (c) (d)

return 1 + _______
(e)

Exam generated for <EMAILADDRESS> 10

i. (1.0 pt) Fill in blank (a).

-1

 0

1

val

val[0]

ii. (1.0 pt) Fill in blank (b).

 min

max

sum

find

len

list

any

all

pow

iii. (1.0 pt) Fill in blank (c).

val[1:]

iv. (1.0 pt) Fill in blank (d).

val

v. (1.0 pt) Fill in blank (e).

find(s.rest, val)

Exam generated for <EMAILADDRESS> 11

(b) (3.0 points)

Implement insert, which takes in a Linked List of characters, s, a string val, and an index i and mutates
s such that val is inserted as a Linked List of characters in s starting at index i. insert returns None.
Assume that i > 0.

def insert(s, val, i):
"""Assume i > 0.

>>> s = link_from_program('print("pal")')
>>> insert(s, 'ace', 10)
>>> print(s)
<p r i n t (" p a l a c e ")>
"""
while i > 1:

s = s.rest
i -= 1

tail = s.rest
s.rest = _______

(f)
while _______ is not Link.empty:

(g)
s = s.rest

_______ = tail
(h)

i. (1.0 pt) Fill in blank (f).

link_from_program(val)

ii. (1.0 pt) Fill in blank (g).

s.rest

iii. (1.0 pt) Fill in blank (h).

s.rest

Exam generated for <EMAILADDRESS> 12

(c) (2.0 points)

Implement delete, which takes in a Linked List of characters, s, an index i, and a positive integer n
and mutates s such that the first n characters of s starting at index i are removed. delete returns None.
Assume that i > 0 and i + n is less than or equal to length of s.

def delete(s, i, n):
"""Assume i > 0 and (i + n) is less than or equal to the length of s.

>>> s = link_from_program('print("pal")')
>>> delete(s, 7, 3)
>>> print(s)
<p r i n t (" ")>
"""
while i > 1:

s = s.rest
i -= 1

tail = s.rest
while n > 0:

(i)

n -= 1

(j)

i. (1.0 pt) Fill in blank (i).

tail = tail.rest

ii. (1.0 pt) Fill in blank (j).

s.rest = tail

Exam generated for <EMAILADDRESS> 13

(d) (4.0 points)

Implement find_and_replace, which takes in a Linked List of characters, s, a string, old, and a string
new and mutates s such that the first occurrence of the characters of old are replaced with the characters
of new. find_and_replace returns None. Assume that old exists in s and the first occurrence of old
begins at an index greater than 0.

def find_and_replace(s, old, new):
"""Assume old exists in s and the first occurrence of old begins at an index
greater than 0.

>>> s = link_from_program('x=1+1')
>>> print(s)
<x = 1 + 1>
>>> find_and_replace(s, '1', '4')
>>> print(s)
<x = 4 + 1>
>>> find_and_replace(s, '+1', '-3')
>>> print(s)
<x = 4 - 3>
"""
i = _______

(k)
delete(s, i, _______)

(l)
insert(s, _______, _______)

(m) (n)

i. (1.0 pt) Fill in blank (k).

find(s, old)

ii. (1.0 pt) Fill in blank (l).

len(old)

iii. (1.0 pt) Fill in blank (m).

new

iv. (1.0 pt) Fill in blank (n).

i

Exam generated for <EMAILADDRESS> 14

6. (5.0 points) Major Debacle

A prospective transfer student wants to understand applications statistics at UC Berkeley. The majors has
one row per major, and contains its corresponding discipline and college. The stats table has one row per
major, and includes that major’s number of applicants, admits, and enrolled students.

Create a new table yield, which has a column for each college, and a column yields, which contains the
total yield rate of each college. Only include colleges that have greater than 1 major, and only keep majors with
an acceptance rate greater than 10%.

Yield rate: enrolled divided by admitted. Acceptance rate: admitted divided by applicants.

CREATE TABLE yield AS
SELECT college, _______ AS yields FROM majors, stats WHERE _______ AND _______ _______;

(a) (b) (c) (d)

(a) (1.0 pt) Fill in blank (a)

SUM(enrolled) / SUM(admitted)

(b) (1.0 pt) Fill in blank (b).

majors.college = stats.major

 majors.major = stats.major

majors.discipline = stats.major

stats.applicants > stats.admits

(c) (1.0 pt) Fill in blank (c).

admits / applicants > 0.1

(d) (2.0 pt) Fill in blank (d). You may write AND to continue the WHERE clause (but you don’t have to). You
may also include other clauses such as GROUP BY, ORDER BY, HAVING, and LIMIT (but you don’t have to).

GROUP BY college HAVING COUNT(*) > 1

Exam generated for <EMAILADDRESS> 15

7. (8.0 points) Rotation Situation

Implement rotate, which takes in a list lst and shifts all elements to the left by k indices. For example,
(rotate '(1 2 3 4 5) 2) returns (3 4 5 1 2) as we shift 1 and 2 by two indices to the left, pushing them
to the back of the list.

;;; Rotate lst by k indices to the left
;;;
;;; scm> (rotate '(1 2 3 4 5) 0)
;;; (1 2 3 4 5)
;;; scm> (rotate '(1 2 3 4 5) 1)
;;; (2 3 4 5 1)
;;; scm> (rotate '(1 2 3 4 5) 2)
;;; (3 4 5 1 2)
;;; scm> (rotate '(1 2 3 4 5) 7)
;;; (3 4 5 1 2) ; should still work for k > (length list)!

(define (rotate lst k)
(if (= k 0)

(a)

(rotate (_______ _______ _______) _______)
) (b) (c) (d) (e)

)

(a) (1.0 pt) Fill in blank (a).

lst

(b) (1.0 pt) Fill in blank (b).

car

cdr

cons

list

 append

(c) (1.0 pt) Fill in blank (c).

(cdr lst)

(d) (1.0 pt) Fill in blank (d).

(list (car lst)) -OR- (cons (car lst) nil)

Exam generated for <EMAILADDRESS> 16

(e) (1.0 pt) Fill in blank (e).

(- k 1)

(f) (1.0 pt) Is rotate tail recursive?

 Yes, it is tail recursive.

No, it is not tail recursive.

(g) (2.0 pt) Which expressions are passed to scheme_eval when evaluating (or (- 4 4) 'salutations)?
Select all that apply.

� (or (- 4 4) 'salutations)

2 or

� (- 4 4)

� -

� 4

2 'salutations

Exam generated for <EMAILADDRESS> 17

8. (11.0 points) Golden

Hunters and Demons are rival idols who battle through song. Each idol stores enemies in the enemies dictionary,
where keys are idol objects and values are lists of their enemies (also idol objects). When idols sing, they damage
all of their enemies (if any). If an enemy’s health reaches 0, they’re removed from the enemies dictionary (both
as keys and values). Hunters have a takedown method that reduces their highest-health enemy’s health to 0.

Hint: The get method of a dictionary takes two arguments: key and default. If the key is in the dictionary, its
value is returned. If not, default is returned. E.g., {1:2}.get(1, 3) evaluates to 2, but {1:2}.get(5, 3) is 3.

class Idol():
"""An idol who sings.
>>> rumi, mira, jinu, abby = Hunter('Rumi'), Hunter('Mira'), Demon('Jinu'), Demon('Abby')
>>> rumi
Rumi
>>> jinu.add_enemy(rumi); rumi.add_enemy(abby); rumi.add_enemy(jinu); mira.add_enemy(jinu)
>>> Idol.enemies
{Jinu: [Rumi], Rumi: [Abby, Jinu], Mira: [Jinu]}
>>> jinu.sing(); abby.sing(); # Semicolons run both lines, Abby sings without erroring
Join the Pride.
Join the Pride.
>>> rumi.health # Only Jinu damages Rumi by singing
2
>>> mira.sing(); rumi.takedown(); Idol.enemies # Abby removed as he had highest health
{Jinu: [Rumi], Rumi: [Jinu], Mira: [Jinu]}
>>> rumi.sing(); mira.sing(); Idol.enemies # Jinu ran out of health
{Rumi: [], Mira: []}
"""
enemies, health, damage = {}, 3, 1
def __init__(self, name):

self.name = name
def add_enemy(self, enemy):

Idol.enemies[self] = Idol.enemies[self] + [enemy] if self in Idol.enemies else [enemy]
def sing(self):

for target in _______:
(a)

target.reduce_health(self.damage)
def reduce_health(self, damage):

self.health -= damage
if self.health <= 0:

Idol.enemies.pop(self, None) # Removes the idol from keys
_______ = {_______: [_______] for t in Idol.enemies} # Removes the idol from values

(b) (c) (d)
def _______(self):

(e)
return self.name

class Hunter(Idol):
def takedown(self):

e = max(Idol.enemies[self], key=_______) # Find the top-health enemy. Assume it exists.
if e: (f)

e.reduce_health(e.health)
class Demon(Idol):

def sing(self):
print("Join the Pride.")

(g)

Exam generated for <EMAILADDRESS> 18

(a) (2.0 pt) Fill in blank (a).

Idol.enemies.get(self, []) -OR- self.enemies.get(self, [])

The .get is necessary if the idol does not have an enemy. This is why abby.sing() does not error.

(b) (1.0 pt) Fill in blank (b). Select all that apply.

2 self.enemies

2 self.enemies[self]

� Idol.enemies

2 Idol.enemies[self]

self.enemies does not work as it would create a new enemies object attribute, rather than modifying
the class attribute.

(c) (1.0 pt) Fill in blank (c).

t

(d) (3.0 pt) Fill in blank (d) by completing the list comprehension.

enemy for enemy in Idol.enemies[t] if enemy != self

You can use any loop variable. You can also use self.enemies[t]. You can also use is not instead of !=.

(e) (1.0 pt) Fill in blank (e).

__str__

 __repr__

(f) (1.0 pt) Fill in blank (f).

lambda x: x.health

(g) (2.0 pt) Fill in blank (g). Select all that apply.

2 Idol.sing()

� Idol.sing(self)

2 Idol(self).sing()

2 super().sing(self)

2 super(self).sing()

� super().sing()

Exam generated for <EMAILADDRESS> 19

9. (8.0 points) Getting Hyped Tonight

Ved wants to throw a party tonight! Ved has a non-empty tree t and a list of strings hype_strings. We want
to count the number of strings in hype_strings that are also in t. We say a string is in the tree if the labels of
all nodes from left to right at the same depth form the string. Return the number of hype strings in the tree.

Hint: The pop(index) method removes and returns the item at the specified index in a list; if no index is
given, it removes and returns the last item.

def num_hype(t, hype_strings):
"""
Return the number of hype_strings that are in the tree.
"""

nodes_to_visit = [t, None]
res = 0
curr_str = ""
while nodes_to_visit:

curr_node = _______
(a)

if curr_node is None: # None represents end of current depth
if _______:

(b)

(c)
curr_str = ""
if nodes_to_visit:

nodes_to_visit.append(None)
else:

curr_str = _______
(d)

for b in curr_node.branches:

(e)
return res

Exam generated for <EMAILADDRESS> 20

(a) (2.0 pt) Fill in blank (a).

nodes_to_visit.pop(0)

(b) (2.0 pt) Fill in blank (b).

curr_str in hype_strings

(c) (1.0 pt) Fill in blank (c).

curr_str += curr_node

nodes_to_visit.append(curr_node)

nodes_to_visit.pop(curr_node)

 res += 1

(d) (1.0 pt) Fill in blank (d).

curr_str + curr_node.label

(e) (2.0 pt) Fill in blank (e).

num_hype(b, hype_strings)

num_hype(b, hype_strings[1:])

 nodes_to_visit.append(b)

nodes_to_visit.extend([b, None])

Exam generated for <EMAILADDRESS> 21

10. (5.0 points) Plop, pop, plop

Answer the questions about the code below. Use the free space or scratch paper to draw the diagram to help
you answer the questions, however any drawn diagrams will not be graded.

def plop(f, lst):
while s and f(lst, lst.pop()):

print(lst)
lst = [f(lst, s.pop())] + lst

return lst

s = [x + 1 for x in range(1, 4)]
t = plop(lambda t, x: t[len(s) - 1] + x, s)

(a) (2.0 pt) What’s displayed by executing the above code?

[2, 3]
[5]

(b) (1.0 pt) How many frames are opened? Assume list comprehensions and method calls like .pop() do not
open new frames. Do not count the Global frame.

5

(c) (1.0 pt) What would print(s) display in the Global frame after executing the above code?

[2, 3, 4, 5]

[2, 3, 4]

[3, 4]

[4]

 []

[5]

[7]

[5, 7]

[7, 5]

Exam generated for <EMAILADDRESS> 22

(d) (1.0 pt) What would print(t) display in the Global frame after executing the above code?

[2, 3, 4, 5]

[2, 3, 4]

[3, 4]

[4]

[]

[5]

[7]

[5, 7]

 [7, 5]

Exam generated for <EMAILADDRESS> 23

11. (0.0 points) Just for Fun

This is not for points and will not be graded.
Optional: Draw your favorite memory of CS 61A this summer!

Exam generated for <EMAILADDRESS> 24

No more questions.

