1 Learning Goals

- Review the basics of environment diagrams and understand them at a deeper level
- Understand the idea of function self-reference as a prelude to recursion (which we will do next week)
- Review higher-order functions and lambda functions at a high level
- Learn how to approach more challenging higher-order function and lambda problems
2 Orientation/Tutorial Review

2.1 Draw the environment diagram that results from executing the code below.

```python
1  def curry2(h):
2       def f(x):
3           def g(y):
4               return h(x, y)
5           return g
6       return f
7  make_adder = curry2(lambda x, y: x + y)
8  add_three = make_adder(3)
9  add_four = make_adder(4)
10  five = add_three(2)
```
2. Write `curry2` as a lambda function.
Write a function `print_delayed` that delays printing its argument until the next function call. `print_delayed` takes in an argument `x` and returns a new function `delay_print`. When `delay_print` is called, it prints out `x` and returns another `delay_print`.

```python
def print_delayed(x):
    """Return a new function. This new function, when called, will print out `x` and return another function with the same behavior."""
    >>> f = print_delayed(1)
    >>> f = f(2)
    1
    >>> f = f(3)
    2
    >>> f = f(4)(5)
    3
    4
    >>> f("hi")
    5
    <function print_delayed> # a function is returned
    """

def delay_print(y):
    ------------------------
    return ------------------------

return delay_print
```

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.
3 Additional Practice (Medium-Level Difficulty)

3.1 The following code has been loaded into the Python interpreter:

```python
def skipped(f):
    def g():
        return f
    return g

def composed(f, g):
    def h(x):
        return f(g(x))
    return h

def added(f, g):
    def h(x):
        return f(x) + g(x)
    return h

def square(x):
    return x * x

def two(x):
    return 2
```

What will Python output when the following lines are evaluated?

```python
>>> composed(square, two)(7)

>>> skipped(added(square, two))(3)

>>> composed(two, square)(2)
```
4 Exam-Level Practice

4.1 Fall 2020 Midterm 1, Question 3 Fill in each example in the code example below so that its environment diagram is what you see on the following page:

```python
def vote(vote):
    please = ______
    ______ = ty + 3
    return please

ty = 1
register = ______(lambda nov: nov + ty)
 ______
register(______)
```
Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.