INSTRUCTIONS

- You have 10 minutes to complete this quiz.
- The exam is closed book, closed notes, closed computer, closed calculator.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.
- For multiple choice questions, fill in each option or choice completely.
 - ☐ means mark all options that apply
 - ○ means mark a single choice

<table>
<thead>
<tr>
<th>Last name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First name</td>
<td></td>
</tr>
<tr>
<td>Student ID number</td>
<td></td>
</tr>
<tr>
<td>CalCentral email (@berkeley.edu)</td>
<td></td>
</tr>
<tr>
<td>Discussion Section</td>
<td>____ ____ ____</td>
</tr>
</tbody>
</table>

All the work on this exam is my own. (please sign)

0. Your thoughts? Draw your favorite Halloween costume idea!
1. Bubba Gump
Write the output displayed by the interactive Python interpreter when each expression below is evaluated.

class Tree:
 def __init__(self, label, branches = ()):
 self.label = label
 self.branches = list(branches)

 def is_leaf(self):
 return not self.branches

 def __repr__(self):
 if self.is_leaf():
 return repr(self.label)
 return 'Tree('+ repr(self.label) +', ' + repr(self.branches) + ')

forrest = Tree(1)
gump = Tree(1, [forrest, forrest])
forrest.label = 2
forrest = Tree(forrest)

>>> run = Tree(forrest, gump.branches)

>>> run

>>> forrest.label = 1

>>> run

2. Seeing the Forest for the Trees
Implement all_paths which takes a Tree and returns a list of linked list paths from the root to each leaf.

def all_paths(t):
 """"
 >>> t = Tree(1, [Tree(2), Tree(3)])
 >>> all_paths(t)
 [Link(1, Link(2)), Link(1, Link(3))]
 """
 if ___:
 return _________________________________
 paths = []
 __:
 paths += ___
 return paths