# Homework 1: Variables & Functions, Control

*Due by 11:59pm on Thursday, January 28*

## Instructions

Download hw01.zip.

**Submission:** When you are done, submit with ```
python3 ok
--submit
```

. You may submit more than once before the deadline; only the
final submission will be scored. Check that you have successfully submitted
your code on okpy.org. See Lab 0 for more instructions on
submitting assignments.

**Using Ok:** If you have any questions about using Ok, please
refer to this guide.

**Readings:** You might find the following references
useful:

**Important:** Some of these readings necessary for the homework questions will not be covered until Monday's lecture on Control.

**Grading:** Homework is graded based on
correctness. Each incorrect problem will decrease the total score by one point. There is a homework recovery policy as stated in the syllabus.
**This homework is out of 2 points.**

# Required Questions

### Assignment Getting Started Video

This video provides some helpful direction for tackling the problems on this assignment.

### Q1: Syllabus Quiz

Please fill out our Syllabus Quiz based off of our policies found on our syllabus page.### Q2: A Plus Abs B

Fill in the blanks in the following function for adding `a`

to the
absolute value of `b`

, without calling `abs`

. You may **not** modify any
of the provided code other than the two blanks.

```
from operator import add, sub
def a_plus_abs_b(a, b):
"""Return a+abs(b), but without calling abs.
>>> a_plus_abs_b(2, 3)
5
>>> a_plus_abs_b(2, -3)
5
>>> # a check that you didn't change the return statement!
>>> import inspect, re
>>> re.findall(r'^\s*(return .*)', inspect.getsource(a_plus_abs_b), re.M)
['return f(a, b)']
"""
if b < 0:
f = _____
else:
f = _____
return f(a, b)
```

Use Ok to test your code:

`python3 ok -q a_plus_abs_b`

### Q3: Two of Three

Write a function that takes three *positive* numbers as arguments and returns the sum
of the squares of the two smallest numbers. **Use only a single line for
the body of the function.**

```
def two_of_three(x, y, z):
"""Return a*a + b*b, where a and b are the two smallest members of the
positive numbers x, y, and z.
>>> two_of_three(1, 2, 3)
5
>>> two_of_three(5, 3, 1)
10
>>> two_of_three(10, 2, 8)
68
>>> two_of_three(5, 5, 5)
50
>>> # check that your code consists of nothing but an expression (this docstring)
>>> # a return statement
>>> import inspect, ast
>>> [type(x).__name__ for x in ast.parse(inspect.getsource(two_of_three)).body[0].body]
['Expr', 'Return']
"""
return _____
```

Hint:Consider using the`max`

or`min`

function:`>>> max(1, 2, 3) 3 >>> min(-1, -2, -3) -3`

Use Ok to test your code:

`python3 ok -q two_of_three`

### Q4: Largest Factor

Write a function that takes an integer `n`

that is **greater than 1** and
returns the largest integer that is smaller than `n`

and evenly divides `n`

.

```
def largest_factor(n):
"""Return the largest factor of n that is smaller than n.
>>> largest_factor(15) # factors are 1, 3, 5
5
>>> largest_factor(80) # factors are 1, 2, 4, 5, 8, 10, 16, 20, 40
40
>>> largest_factor(13) # factor is 1 since 13 is prime
1
"""
"*** YOUR CODE HERE ***"
```

Hint:To check if`b`

evenly divides`a`

, you can use the expression`a % b == 0`

, which can be read as, "the remainder of dividing`a`

by`b`

is 0."

Use Ok to test your code:

`python3 ok -q largest_factor`

### Q5: If Function vs Statement

Let's try to write a function that does the same thing as an `if`

statement.

```
def if_function(condition, true_result, false_result):
"""Return true_result if condition is a true value, and
false_result otherwise.
>>> if_function(True, 2, 3)
2
>>> if_function(False, 2, 3)
3
>>> if_function(3==2, 'equal', 'not equal')
'not equal'
>>> if_function(3>2, 'bigger', 'smaller')
'bigger'
"""
if condition:
return true_result
else:
return false_result
```

Despite the doctests above, this function actually does *not* do the
same thing as an `if`

statement in all cases. To prove this fact,
write functions `cond`

, `true_func`

, and `false_func`

such that `with_if_statement`

prints `61A`

, but `with_if_function`

prints both `Welcome to`

and `61A`

on separate lines.

```
def with_if_statement():
"""
>>> result = with_if_statement()
61A
>>> print(result)
None
"""
if cond():
return true_func()
else:
return false_func()
def with_if_function():
"""
>>> result = with_if_function()
Welcome to
61A
>>> print(result)
None
"""
return if_function(cond(), true_func(), false_func())
def cond():
"*** YOUR CODE HERE ***"
def true_func():
"*** YOUR CODE HERE ***"
def false_func():
"*** YOUR CODE HERE ***"
```

Hint: If you are having a hard time identifying how an`if`

statement and`if_function`

differ, consider the rules of evaluation for`if`

statements and call expressions.

Use Ok to test your code:

```
python3 ok -q with_if_statement
python3 ok -q with_if_function
```

### Q6: Hailstone

Douglas Hofstadter's Pulitzer-prize-winning book, *GĂ¶del, Escher, Bach*, poses
the following mathematical puzzle.

- Pick a positive integer
`n`

as the start. - If
`n`

is even, divide it by 2. - If
`n`

is odd, multiply it by 3 and add 1. - Continue this process until
`n`

is 1.

The number `n`

will travel up and down but eventually end at 1 (at least for
all numbers that have ever been tried -- nobody has ever proved that the
sequence will terminate). Analogously, a hailstone travels up and down in the
atmosphere before eventually landing on earth.

This sequence of values of `n`

is often called a Hailstone sequence. Write a
function that takes a single argument with formal parameter name `n`

, prints
out the hailstone sequence starting at `n`

, and returns the number of steps in
the sequence:

```
def hailstone(n):
"""Print the hailstone sequence starting at n and return its
length.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
"""
"*** YOUR CODE HERE ***"
```

Hailstone sequences can get quite long! Try 27. What's the longest you can find?

Use Ok to test your code:

`python3 ok -q hailstone`

**Curious about hailstones/hailstone sequences? Take a look at these articles:**

- Check out this article to learn more about how hailstones work!
- In 2019, there was a major development in understanding how the hailstone conjecture works for most numbers!

## Submit

Make sure to submit this assignment by running:

`python3 ok --submit`