Lab 3: Recursion, Tree Recursion

Due by 11:59pm on Tuesday, July 8.

Starter Files

Download lab03.zip.

Topics

Consult this section if you need a refresher on the material for this lab. It's okay to skip directly to the questions and refer back here should you get stuck.

A recursive function is a function that calls itself in its body, either directly or indirectly.

Let's look at the canonical example, factorial.

Factorial, denoted with the ! operator, is defined as:

n! = n * (n-1) * ... * 1

For example, 5! = 5 * 4 * 3 * 2 * 1 = 120

The recursive implementation for factorial is as follows:

def factorial(n):
    if n == 0:
        return 1
    return n * factorial(n - 1)

We know from its definition that 0! is 1. Since n == 0 is the smallest number we can compute the factorial of, we use it as our base case. The recursive step also follows from the definition of factorial, i.e., n! = n * (n-1)!.

Recursive functions have three important components:

  1. Base case. You can think of the base case as the case of the simplest function input, or as the stopping condition for the recursion.

    In our example, factorial(0) is our base case for the factorial function.

  2. Recursive call on a smaller problem. You can think of this step as calling the function on a smaller problem that our current problem depends on. We assume that a recursive call on this smaller problem will give us the expected result; we call this idea the "recursive leap of faith".

    In our example, factorial(n) depends on the smaller problem of factorial(n-1).

  3. Solve the larger problem. In step 2, we found the result of a smaller problem. We want to now use that result to figure out what the result of our current problem should be, which is what we want to return from our current function call.

    In our example, we can compute factorial(n) by multiplying the result of our smaller problem factorial(n-1) (which represents (n-1)!) by n (the reasoning being that n! = n * (n-1)!).

The next few questions in lab will have you writing recursive functions. Here are some general tips:

  • Paradoxically, to write a recursive function, you must assume that the function is fully functional before you finish writing it; this is called the recursive leap of faith.
  • Consider how you can solve the current problem using the solution to a simpler version of the problem. The amount of work done in a recursive function can be deceptively little: remember to take the leap of faith and trust the recursion to solve the slightly smaller problem without worrying about how.
  • Think about what the answer would be in the simplest possible case(s). These will be your base cases - the stopping points for your recursive calls. Make sure to consider the possibility that you're missing base cases (this is a common way recursive solutions fail).
  • It may help to write an iterative version first.
A tree recursive function is a recursive function that makes more than one call to itself, resulting in a tree-like series of calls.

For example, this is the Virahanka-Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ....

Each term is the sum of the previous two terms. This tree-recursive function calculates the nth Virahanka-Fibonacci number.

def virfib(n):
    if n == 0 or n == 1:
        return n
    return virfib(n - 1) + virfib(n - 2)

Calling virfib(6) results in a call structure that resembles an upside-down tree (where f is virfib):

Virahanka-Fibonacci tree.

Each recursive call f(i) makes a call to f(i-1) and a call to f(i-2). Whenever we reach an f(0) or f(1) call, we can directly return 0 or 1 without making more recursive calls. These calls are our base cases.

A base case returns an answer without depending on the results of other calls. Once we reach a base case, we can go back and answer the recursive calls that led to the base case.

As we will see, tree recursion is often effective for problems with branching choices. In these problems, you make a recursive call for each branching choice.

Here are some examples of tree-recursive problems:

  • Given a list of paid tasks and a limited amount of time, which tasks should you choose to maximize your pay? This is actually a variation of the Knapsack problem, which focuses on finding some optimal combination of items.
  • Suppose you are lost in a maze and see several different paths. How do you find your way out? This is an example of path finding, and is tree recursive because at every step, you could have multiple directions to choose from that could lead out of the maze.
  • Your dryer costs $2 per cycle and accepts all types of coins. How many different combinations of coins can you create to run the dryer? This is similar to the partitions problem from the textbook.

Required Questions


Getting Started Videos

These videos may provide some helpful direction for tackling the coding problems on this assignment.

To see these videos, you should be logged into your berkeley.edu email.

YouTube link

Recursion

Q1: Double Eights

Write a recursive function that takes in a positive integer n and determines if its digits contain two adjacent 8s (that is, two 8s right next to each other).

Hint: Start by coming up with a recursive plan: the digits of a number have double eights if either (think of something that is straightforward to check) or double eights appear in the rest of the digits.

Important: Use recursion; the tests will fail if you use any loops (for, while).

def double_eights(n):
    """Returns whether or not n has two digits in row that
    are the number 8.

    >>> double_eights(1288)
    True
    >>> double_eights(880)
    True
    >>> double_eights(538835)
    True
    >>> double_eights(284682)
    False
    >>> double_eights(588138)
    True
    >>> double_eights(78)
    False
    >>> # ban iteration
    >>> from construct_check import check
    >>> check(SOURCE_FILE, 'double_eights', ['While', 'For'])
    True
    """
    "*** YOUR CODE HERE ***"

Use Ok to test your code:

python3 ok -q double_eights

Q2: GCD

The greatest common divisor of two positive integers a and b is the largest integer which evenly divides both numbers (with no remainder). Euclid, a Greek mathematician in 300 B.C., realized that the greatest common divisor of a and b is one of the following:

  • the smaller value if it evenly divides the larger value, or
  • the greatest common divisor of the smaller value and the remainder of the larger value divided by the smaller value

In other words, if a is greater than b and a is not divisible by b, then

gcd(a, b) = gcd(b, a % b)

Write the gcd function recursively using Euclid's algorithm.

def gcd(a, b):
    """Returns the greatest common divisor of a and b.
    Should be implemented using recursion.

    >>> gcd(34, 19)
    1
    >>> gcd(39, 91)
    13
    >>> gcd(20, 30)
    10
    >>> gcd(40, 40)
    40
    """
    "*** YOUR CODE HERE ***"

Use Ok to test your code:

python3 ok -q gcd

Tree Recursion

Q3: WWPD: Squared Virahanka Fibonacci

Use Ok to test your knowledge with the following "What Would Python Display?" questions:

python3 ok -q squared-virfib-wwpd -u

Hint: If you are stuck, make sure to try drawing out the recursive call tree! This is a challenging problem -- doing so will really help with understanding how tree recursion works. We strongly encourage trying to draw things out before asking for help.

Background: In the Squared Virahanka Fibonacci sequence, each number in the sequence is the square of the sum of the previous two numbers in the sequence. The first 0th and 1st number in the sequence are 0 and 1, respectively. The recursive virfib_sq function takes in an argument n and returns the nth number in the Square Virahanka Fibonacci sequence.

>>> def virfib_sq(n):
>>>     print(n)
>>>     if n <= 1:
>>>         return n
>>>     return (virfib_sq(n - 1) + virfib_sq(n - 2)) ** 2
>>> r0 = virfib_sq(0)
______
0
>>> r1 = virfib_sq(1)
______
1
>>> r2 = virfib_sq(2)
______
2 1 0
>>> r3 = virfib_sq(3)
______
3 2 1 0 1
>>> r3
______
4
>>> (r1 + r2) ** 2
______
4
>>> r4 = virfib_sq(4)
______
4 3 2 1 0 1 2 1 0
>>> r4
______
25

Q4: Pascal's Triangle

Pascal's triangle gives the coefficients of a binomial expansion; if you expand the expression (a + b) ** n, all coefficients will be found on the nth row of the triangle, and the coefficient of the ith term will be at the ith column.

Here's a part of the Pascal's trangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Every number in Pascal's triangle is defined as the sum of the item above it and the item above and to the left of it. Rows and columns are zero-indexed; that is, the first row is row 0 instead of 1 and the first column is column 0 instead of column 1. For example, the item at row 2, column 1 in Pascal's triangle is 2.

Now, define the procedure pascal(row, column) which takes a row and a column, and finds the value of the item at that position in Pascal's triangle. Note that Pascal's triangle is only defined at certain areas; use 0 if the item does not exist. For the purposes of this question, you may also assume that row >= 0 and column >= 0.

Hint: Pascal's Triangle can be visualized as a grid rather than a geometric, three-sided triangle. With this in mind, how does the position of the value you are trying to find relate to the positions of the two numbers that add up to it? At what coordinates of the "grid" do we find out the value and don't need further calculations? Remember that the positions are 0-indexed!

Here is a visualization of the grid:

Pascal Grid

def pascal(row, column):
    """Returns the value of the item in Pascal's Triangle
    whose position is specified by row and column.
    >>> pascal(0, 0)    # The top left (the point of the triangle)
    1
    >>> pascal(0, 5)	# Empty entry; outside of Pascal's Triangle
    0
    >>> pascal(3, 2)	# Row 3 (1 3 3 1), Column 2
    3
    >>> pascal(4, 2)     # Row 4 (1 4 6 4 1), Column 2
    6
    """
    "*** YOUR CODE HERE ***"

Use Ok to test your code:

python3 ok -q pascal

Q5: Insect Combinatorics

Consider an insect in an M by N grid. The insect starts at the bottom left corner, (1, 1), and wants to end up at the top right corner, (M, N). The insect is only capable of moving right or up. Write a function paths that takes a grid length and width and returns the number of different paths the insect can take from the start to the goal. (There is a closed-form solution to this problem, but try to answer it procedurally using recursion.)

grid

For example, the 2 by 2 grid has a total of two ways for the insect to move from the start to the goal. For the 3 by 3 grid, the insect has 6 diferent paths (only 3 are shown above).

Hint: What happens if we hit the top or rightmost edge?

def paths(m, n):
    """Return the number of paths from one corner of an
    M by N grid to the opposite corner.

    >>> paths(2, 2)
    2
    >>> paths(5, 7)
    210
    >>> paths(117, 1)
    1
    >>> paths(1, 157)
    1
    """
    "*** YOUR CODE HERE ***"

Use Ok to test your code:

python3 ok -q paths

Check Your Score Locally

You can locally check your score on each question of this assignment by running

python3 ok --score

This does NOT submit the assignment! When you are satisfied with your score, submit the assignment to Gradescope to receive credit for it.

Submit Assignment

Submit this assignment by uploading any files you've edited to the appropriate Gradescope assignment. Lab 00 has detailed instructions. Correctly completing all questions is worth one point for regular section students and two points for mega section students.

If you are in regular section, be sure to fill out your TA's attendance form before you leave section. Attending lab section is worth one point for regular section students.