Discussion 8: Linked Lists
If there are fewer than 3 people in your group, merge your group with another group in the room. If your group has 6 or more students, you're welcome to split into two sub-groups and then sync up at the end. If you want two separate Pensieve documents for the two sub-groups, just have one sub-group add 1000 to their group number.
Switch to Pensieve:
- Everyone: Go to pensieve.co, log in with your @berkeley.edu email, and enter your group number as the room number (which was in the email that assigned you to this discussion). As long as you all enter the same number (any number), you'll all be using a shared document.
Once you're on Pensieve, you don't need to return to this page; Pensieve has all the same content (but more features). If for some reason Penseive doesn't work, return to this page and continue with the discussion.
Attendance
Your TA will come around during discussion to check you in. You can start on the worksheet before being checked in; you don't need to wait for your TA to get started.
If you didn't attend for a good reason (such as being sick), fill out this form (within 2 weeks of your discussion): attendance form
Getting Started
Everybody say your name and your birthday and then tell the group about your favorite birthday party you've attended (either for your birthday or someone else's).
Pro tip: Groups tend not to ask for help unless they've been stuck for a looooooong time. Try asking for help sooner. We're pretty helpful! You might learn something.
Linked Lists
A linked list is a Link object or Link.empty.
You can mutate a Link object s in two ways:
- Change the first element with
s.first = ... - Change the rest of the elements with
s.rest = ...
You can make a new Link object by calling Link:
Link(4)makes a linked list of length 1 containing 4.Link(4, s)makes a linked list that starts with 4 followed by the elements of linked lists.
class Link:
"""A linked list is either a Link object or Link.empty
>>> s = Link(3, Link(4, Link(5)))
>>> s.rest
Link(4, Link(5))
>>> s.rest.rest.rest is Link.empty
True
>>> s.rest.first * 2
8
>>> print(s)
(3 4 5)
"""
empty = ()
def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest
def __repr__(self):
if self.rest:
rest_repr = ', ' + repr(self.rest)
else:
rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'
def __str__(self):
string = '('
while self.rest is not Link.empty:
string += str(self.first) + ' '
self = self.rest
return string + str(self.first) + ')'
Drawing time: Pick a way for your group to draw diagrams. Paper, a whiteboard, or a tablet, are all fine. If you don't have anything like that, ask another group in the room if they have extra paper.
Q1: Strange Loop
In lab, there was a Link object with a cycle that represented an infinite repeating list of 1's.
>>> ones = Link(1)
>>> ones.rest = ones
>>> [ones.first, ones.rest.first, ones.rest.rest.first, ones.rest.rest.rest.first]
[1, 1, 1, 1]
>>> ones.rest is ones
True
Implement strange_loop, which takes no arguments and returns a Link object
s for which s.rest.first.rest is s.
Draw a picture of the linked list you want to create, then write code to create it.
s.rest.first.rest to exist at all, the second element of s, called
s.rest.first, must itself be a linked list.
s
= Link(6, Link(Link(1))), then change s.rest.first.rest to create the cycle.
Q2: Sum Two Ways
Implement both sum_rec and sum_iter. Each one takes a linked list of numbers
s and a non-negative integer k and returns the sum of the first k elements
of s. If there are fewer than k elements in s, all of them are summed. If
k is 0 or s is empty, the sum is 0.
Use recursion to implement sum_rec. Don't use recursion to implement
sum_iter; use a while loop instead.
To get started on the recursive implementation, consider the example a =
Link(1, Link(6, Link(8))), and the call sum_rec(a, 2). Write down the
recursive call to sum_rec that would help compute sum_rec(a, 2). Then, write
down what that recursive call should return. Discuss how this return value is
useful in computing the return value of sum_rec(a, 2).
s.first to the sum of the first k-1 elements in s.rest. Your base case
condition should include s is Link.empty so that you're checking whether s
is empty before ever evaluating s.first or s.rest.
total, then repeatedly (in a while loop) add
s.first to total, set s = s.rest to advance through the linked list, and reduce k by one.
Discussion time: When adding up numbers, the intermediate sums depend on the
order. (1 + 3) + 5 and 1 + (3 + 5) both equal 9, but the first one makes 4
along the way while the second makes 8 along the way. For the same linked list
s and length k, will sum_rec and sum_iter both make the same
intermediate sums along the way?
For a summation, the order of additions doesn't affect the result, but for other
operations this ordering matters. For example, (2 ** 3) ** 5 is much smaller
than 2 ** (3 ** 5).
Q3: Overlap
Implement overlap, which takes two linked lists of numbers called s and t
that are sorted in increasing order and have no repeated elements within each
list. It returns the count of how many numbers appear in both lists.
This can be done in linear time in the combined length of s and t
by always advancing forward in the linked list whose first element is smallest
until both first elements are equal (add one to the count and advance both) or
one list is empty (time to return). Here's a
lecture video clip
about this (but the video uses Python lists instead of linked lists).
Take a vote to decide whether to use recursion or iteration. Either way works (and the solutions are about the same complexity/difficulty). (If you finish quickly, implement it the other way too!)
if s is Link.empty or t is Link.empty:
return 0
if s.first == t.first:
return __________________
elif s.first < t.first:
return __________________
elif s.first > t.first:
return __________________
k = 0
while s is not Link.empty and t is not Link.empty:
if s.first == t.first:
__________________
elif s.first < t.first:
__________________
elif s.first > t.first:
__________________
return k
Extra Fun
Some of you have requested additional practice with generators. Wouldn't it be fun to use a generator for a linked list problem?!
Q4: Iterate in Order
Implement iterate_in_order, which takes two linked lists of numbers called s and t
that are sorted in increasing order and have no repeated elements within each
list. It returns a generator that iterates over all items in s and t in
non-decreasing order.
Extra Challenging Extra Fun
This last question is similar in complexity to an A+ question on an exam. Feel free to skip it, but it's a fun one, so try it if you have time.
Q5: Decimal Expansion
Definition. The decimal expansion of a fraction n/d with n < d is an
infinite sequence of digits starting with the 0 before the decimal point and
followed by digits that represent the tenths, hundredths, and thousands place
(and so on) of the number n/d. E.g., the decimal expansion of 2/3 is a zero
followed by an infinite sequence of 6's: 0.6666666....
Implement divide, which takes positive integers n and d with n < d. It
returns a linked list with a cycle containing the digits of the infinite decimal
expansion of n/d. The provided display function prints the first k digits
after the decimal point.
For example, 1/22 would be represented as x below:
>>> 1/22
0.045454545454545456
>>> x = Link(0, Link(0, Link(4, Link(5))))
>>> x.rest.rest.rest.rest = x.rest.rest
>>> display(x, 20)
0.04545454545454545454...
while statement:
>>> q, r = 10 * n // d, 10 * n % d
>>> tail.rest = Link(q)
>>> tail = tail.rest
>>> n = r
While constructing the decimal expansion, store the tail for each n in a
dictionary keyed by n. When some n appears a second time, instead of
constructing a new Link, set its original link as the rest of the previous
link. That will form a cycle of the appropriate length.