Homework 2: Higher-Order Functions
Due by 11:59pm on Thursday, September 12
Instructions
Download hw02.zip. Inside the archive, you will find
a file called hw02.py, along with a copy of the ok
autograder.
Submission: When you are done, submit the assignment by uploading all code files you've edited to Gradescope. You may submit more than once before the deadline; only the final submission will be scored. Check that you have successfully submitted your code on Gradescope. See Lab 0 for more instructions on submitting assignments.
Using Ok: If you have any questions about using Ok, please refer to this guide.
Readings: You might find the following references useful:
Grading: Homework is graded based on correctness. Each incorrect problem will decrease the total score by one point. This homework is out of 2 points.
Required Questions
Getting Started Videos
These videos may provide some helpful direction for tackling the coding problems on this assignment.
To see these videos, you should be logged into your berkeley.edu email.
Several doctests refer to these functions:
from operator import add, mul
square = lambda x: x * x
identity = lambda x: x
triple = lambda x: 3 * x
increment = lambda x: x + 1
Higher-Order Functions
Q1: Product
Write a function called product
that returns the product of the first n
terms of a sequence.
Specifically, product
takes in an integer n
and term
, a single-argument function that determines a sequence.
(That is, term(i)
gives the i
th term of the sequence.)
product(n, term)
should return term(1) * ... * term(n)
.
def product(n, term):
"""Return the product of the first n terms in a sequence.
n: a positive integer
term: a function that takes one argument to produce the term
>>> product(3, identity) # 1 * 2 * 3
6
>>> product(5, identity) # 1 * 2 * 3 * 4 * 5
120
>>> product(3, square) # 1^2 * 2^2 * 3^2
36
>>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2
14400
>>> product(3, increment) # (1+1) * (2+1) * (3+1)
24
>>> product(3, triple) # 1*3 * 2*3 * 3*3
162
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q product
Q2: Accumulate
Let's take a look at how product
is an instance of a more
general function called accumulate
, which we would like to implement:
def accumulate(fuse, start, n, term):
"""Return the result of fusing together the first n terms in a sequence
and start. The terms to be fused are term(1), term(2), ..., term(n).
The function fuse is a two-argument commutative & associative function.
>>> accumulate(add, 0, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5
15
>>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5
26
>>> accumulate(add, 11, 0, identity) # 11 (fuse is never used)
11
>>> accumulate(add, 11, 3, square) # 11 + 1^2 + 2^2 + 3^2
25
>>> accumulate(mul, 2, 3, square) # 2 * 1^2 * 2^2 * 3^2
72
>>> # 2 + (1^2 + 1) + (2^2 + 1) + (3^2 + 1)
>>> accumulate(lambda x, y: x + y + 1, 2, 3, square)
19
"""
"*** YOUR CODE HERE ***"
accumulate
has the following parameters:
fuse
: a two-argument function that specifies how the current term is fused with the previously accumulated termsstart
: value at which to start the accumulationn
: a non-negative integer indicating the number of terms to fuseterm
: a single-argument function;term(i)
is thei
th term of the sequence
Implement accumulate
, which fuses the first n
terms of the sequence defined
by term
with the start
value using the fuse
function.
For example, the result of accumulate(add, 11, 3, square)
is
add(11, add(square(1), add(square(2), square(3)))) =
11 + square(1) + square(2) + square(3) =
11 + 1 + 4 + 9 = 25
Assume that
fuse
is commutative,fuse(a, b) == fuse(b, a)
, and associative,fuse(fuse(a, b), c) == fuse(a, fuse(b, c))
.
Then, implement summation
(from lecture) and product
as one-line calls to
accumulate
.
Important: Both
summation_using_accumulate
andproduct_using_accumulate
should be implemented with a single line of code starting withreturn
.
def summation_using_accumulate(n, term):
"""Returns the sum: term(1) + ... + term(n), using accumulate.
>>> summation_using_accumulate(5, square) # square(1) + square(2) + ... + square(4) + square(5)
55
>>> summation_using_accumulate(5, triple) # triple(1) + triple(2) + ... + triple(4) + triple(5)
45
>>> # This test checks that the body of the function is just a return statement.
>>> import inspect, ast
>>> [type(x).__name__ for x in ast.parse(inspect.getsource(summation_using_accumulate)).body[0].body]
['Expr', 'Return']
"""
return ____
def product_using_accumulate(n, term):
"""Returns the product: term(1) * ... * term(n), using accumulate.
>>> product_using_accumulate(4, square) # square(1) * square(2) * square(3) * square()
576
>>> product_using_accumulate(6, triple) # triple(1) * triple(2) * ... * triple(5) * triple(6)
524880
>>> # This test checks that the body of the function is just a return statement.
>>> import inspect, ast
>>> [type(x).__name__ for x in ast.parse(inspect.getsource(product_using_accumulate)).body[0].body]
['Expr', 'Return']
"""
return ____
Use Ok to test your code:
python3 ok -q accumulate
python3 ok -q summation_using_accumulate
python3 ok -q product_using_accumulate
Q3: Make Repeater
Implement the function make_repeater
which takes a one-argument function f
and a positive integer n
. It returns a one-argument function, where
make_repeater(f, n)(x)
returns the value of f(f(...f(x)...))
in which f
is
applied n
times to x
. For example, make_repeater(square, 3)(5)
squares 5
three times and returns 390625, just like square(square(square(5)))
.
def make_repeater(f, n):
"""Returns the function that computes the nth application of f.
>>> add_three = make_repeater(increment, 3)
>>> add_three(5)
8
>>> make_repeater(triple, 5)(1) # 3 * (3 * (3 * (3 * (3 * 1))))
243
>>> make_repeater(square, 2)(5) # square(square(5))
625
>>> make_repeater(square, 3)(5) # square(square(square(5)))
390625
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q make_repeater
Check Your Score Locally
You can locally check your score on each question of this assignment by running
python3 ok --score
This does NOT submit the assignment! When you are satisfied with your score, submit the assignment to Gradescope to receive credit for it.
Submit Assignment
Submit this assignment by uploading any files you've edited to the appropriate Gradescope assignment. Lab 00 has detailed instructions.
[Optional] Exam Practice
Here are some related questions from past exams for you to try. These are optional. There is no way to submit them.